Postquam philosophus posuit rationes ad ostendendum quod locus sit, hic ponit sex rationes ad ostendendum quod locus non sit. Principium autem ad investigandum de aliquo an sit, oportet accipere quid sit, saltem quid significetur per nomen. Et ideo dicit quod quamvis ostensum sit quod locus sit, tamen habet defectum, idest dubitationem, quid est, etsi est: utrum scilicet sit quaedam moles corporea, aut aliqua natura alterius generis.
Et ex hoc sic argumentatur. Si locus est aliquid, oportet quod sit corpus: quia locus habet tres dimensiones, scilicet longitudinis, latitudinis et profunditatis: his autem determinatur corpus; quia omne quod habet tres dimensiones, est corpus. Sed impossibile est locum esse corpus: quia cum locus et locatum sint simul, sequeretur duo corpora esse simul; quod est inconveniens.
Ergo impossibile est locum aliquid esse.
Secundam rationem ponit ibi: amplius, si vere corporis locus est etc.: quae talis est.
Si locus corporis vere est quoddam receptaculum corporis aliud a corpore, oportet quod etiam superficiei sit aliquod receptaculum aliud ab ipsa: et similiter est de aliis terminis quantitatis, quae sunt linea et punctus.
Et hanc conditionalem sic probat. Propter hoc enim ostendebatur locus esse alius a corporibus, quia ubi nunc est corpus aeris, ibi prius erat corpus aquae: sed similiter ubi prius erat superficies aquae, nunc est superficies aeris: ergo locus superficiei est aliud a superficie. Et similis ratio est de linea et puncto.
Argumentatur ergo a destructione consequentis, per hoc quod non potest esse aliqua differentia loci puncti a puncto: quia, cum locus non excedat locatum, locus puncti non potest esse nisi aliquod indivisibile. Duo autem indivisibilia quantitatis, ut duo puncta simul coniuncta, non sunt nisi unum: ergo eadem ratione neque locus superficiei erit aliud a superficie, neque locus corporis erit aliud a corpore.
Tertiam rationem ponit ibi: quid enim forte ponemus esse locum? etc.: quae talis est.
Omne quod est, vel est elementum, vel est ex elementis; sed locus neutrum horum est; ergo locus non est.
Mediam probat sic.
Omne quod est elementum vel ex elementis, est de numero corporeorum vel incorporeorum; sed locus non est de numero incorporeorum, quia habet magnitudinem; nec de numero corporeorum quia non est corpus, ut probatum est; ergo neque est elementum, neque ex elementis.
Et quia posset aliquis dicere quod, licet non sit corpus, est tamen elementum corporeum; ad hoc excludendum subiungit quod sensibilium corporum sunt elementa corporea: quia elementa non sunt extra genus elementatorum.
Nam ex intelligibilibus principiis, quae sunt incorporea, non constituitur aliqua magnitudo.
Unde si locus non sit corpus, non potest esse elementum corporeum.
Quartam rationem ponit ibi: amplius et cuius utique etc.: quae talis est.
Omne quod est, aliquo modo est causa respectu alicuius; sed locus non potest esse causa secundum aliquem quatuor modorum. Neque enim est causa sicut materia, quia ea quae sunt non constituuntur ex loco, quod est de ratione materiae; neque sicut causa formalis, quia tunc omnia quae habent unum locum, essent unius speciei, cum principium speciei sit forma; neque iterum sicut causa finalis rerum, quia magis videntur esse loca propter locata, quam locata propter loca; neque iterum est causa efficiens vel motiva, cum sit terminus motus. Videtur igitur quod locus nihil sit.
Quintam rationem ponit ibi: amplius et ipse, si est aliquid eorum etc., quae est ratio zenonis: et est talis.
Omne quod est, est in loco; si igitur locus est aliquid, sequitur quod sit in loco, et ille locus in alio loco, et sic in infinitum: quod est impossibile; ergo locus non est aliquid.
Sextam rationem ponit ibi: amplius, sicut omne corpus etc.: quae talis est.
Omne corpus est in loco, et in omni loco est corpus, ut a multis probabiliter existimatur: ex quo accipitur quod locus non sit minor neque maior quam locatum. Cum ergo locatum crescit, oportet quod crescat et locus; sed hoc videtur impossibile, cum locus sit quoddam immobile; non ergo locus aliquid est.
Et ultimo epilogat quod per huiusmodi rationes non solum dubitatur quid sit locus, sed etiam an sit.
Huiusmodi autem rationes solventur per ea quae sequuntur.