Postquam philosophus determinavit de tempore, hic removet quasdam dubitationes circa tempus.
Et primo circa existentiam temporis; secundo circa temporis unitatem, ibi: dubitabit autem aliquis etc..
Circa primum duo facit: primo movet duas dubitationes; secundo solvit eas, ibi: aut quia motus etc..
Dicit ergo primo quod hae dubitationes indigent diligenti consideratione: scilicet quomodo tempus se habeat ad animam; et iterum quare tempus videatur esse ubique, scilicet in terra, in mari et in caelo.
Deinde cum dicit: aut quia motus etc., solvit praemissas quaestiones.
Et primo secundam, quae facilior est; secundo primam, ibi: utrum autem cum non sit etc..
Dicit ergo quod tempus est quoddam accidens motus, quia est numerus eius (accidens autem consuevit nomine habitus et passionis nominari): unde ubicumque est motus oportet quod sit tempus. Omnia autem corpora sunt mobilia, etsi non aliis motibus, saltem motu locali; quia omnia sunt in loco. Et quia posset aliquis dicere quod licet sint mobilia, non tamen omnia moventur, sed quaedam quiescunt, et sic tempus non videtur in omnibus esse: ad hoc excludendum subiungit quod tempus est simul cum motu, sive motus accipiatur secundum actum sive secundum potentiam. Quaecumque enim sunt possibilia moveri et non moventur actu, quiescunt. Tempus autem non solum mensurat motum, sed etiam quietem, ut supra dictum est. Unde relinquitur quod ubicumque est motus, vel actu vel potentia, quod ibi sit tempus.
Deinde cum dicit: utrum autem cum non sit anima etc., solvit primam quaestionem.
Et circa hoc tria facit: primo movet dubitationem; secundo obiicit ad quaestionem, ibi: impossibile enim etc.; tertio solvit, ibi: sed aut hoc etc..
Est ergo dubitatio, utrum non existente anima esset tempus, aut non.
Secundo ibi: impossibile enim cum sit etc., obiicit ad ostendendum quod non. Quia si impossibile esset esse aliquod potens numerare, impossibile esset esse aliquod numerabile, potens scilicet numerari.
Sed si non est numerabile, non est numerus; quia numerus non est nisi in eo quod numeratur actu, vel quod est numerabile in potentia.
Relinquitur ergo quod si non est aliquod potens numerare, quod non sit numerus. Sed nihil aliud natum est numerare quam anima, et inter partes animae non alia quam intellectus; quia numeratio fit per collationem numeratorum ad unam primam mensuram, conferre autem rationis est. Si igitur non est anima intellectiva, non est numerus. Tempus autem est numerus, ut dictum est. Si ergo non est anima intellectiva, non est tempus.
Deinde cum dicit: sed aut hoc etc., solvit dubitationem.
Et dicit quod aut oportet dicere quod tempus non sit, si non est anima; aut oportet hoc dicere verius, quod tempus est utcumque ens sine anima, ut puta si contingit motum esse sine anima. Sicut enim ponitur motus, ita necesse est poni tempus: quia prius et posterius in motu sunt; et haec, scilicet prius et posterius motus, inquantum sunt numerabilia, sunt ipsum tempus.
Ad evidentiam autem huius solutionis considerandum est, quod positis rebus numeratis, necesse est poni numerum. Unde sicut res numeratae dependent a numerante, ita et numerus earum. Esse autem rerum numeratarum non dependet ab intellectu, nisi sit aliquis intellectus qui sit causa rerum, sicut est intellectus divinus: non autem dependet ab intellectu animae. Unde nec numerus rerum ab intellectu animae dependet: sed solum ipsa numeratio, quae est actus animae, ab intellectu animae dependet. Sicuti ergo possunt esse sensibilia sensu non existente, et intelligibilia intellectu non existente, ita possunt esse numerabilia et numerus, non existente numerante.
Sed forte conditionalis quam primo posuit, est vera, scilicet quod si est impossibile esse aliquem numerantem, impossibile est esse aliquod numerabile: sicut haec est vera, si impossibile est esse aliquem sentientem, impossibile est esse aliquid sensibile. Si enim est sensibile, potest sentiri, et si potest sentiri, potest esse aliquod sentiens; licet non sequatur quod si est sensibile, quod sit sentiens. Et similiter sequitur quod si est aliquid numerabile, quod possit esse aliquid numerans. Unde si impossibile est esse aliquod numerans, impossibile est esse aliquid numerabile: non tamen sequitur quod si non est numerans, quod non sit numerabile, ut obiectio philosophi procedebat.
Si ergo motus haberet esse fixum in rebus, sicut lapis vel equus, posset absolute dici quod sicut etiam anima non existente est numerus lapidum, ita etiam anima non existente esset numerus motus, qui est tempus. Sed motus non habet esse fixum in rebus, nec aliquid actu invenitur in rebus de motu, nisi quoddam indivisibile motus, quod est motus divisio: sed totalitas motus accipitur per considerationem animae, comparantis priorem dispositionem mobilis ad posteriorem. Sic igitur et tempus non habet esse extra animam, nisi secundum suum indivisibile: ipsa autem totalitas temporis accipitur per ordinationem animae numerantis prius et posterius in motu, ut supra dictum est. Et ideo signanter dicit philosophus quod tempus, non existente anima, est utcumque ens, idest imperfecte; sicut et si dicatur quod motum contingit esse sine anima imperfecte.
Et per hoc solvuntur rationes supra positae ad ostendendum quod tempus non sit, quia componitur ex partibus non existentibus.
Patet enim ex praedictis, quod non habet esse perfectum extra animam, sicut nec motus.
Deinde cum dicit: dubitabit autem aliquis etc., movet quaestionem de unitate temporis, sive de comparatione temporis ad motum.
Et circa hoc tria facit: primo movet dubitationem; secundo solvit, ibi: aut cuiuslibet etc., tertio manifestat quoddam quod supposuerat, ibi: dicitur autem recte etc..
Dicit ergo primo quod dubitatio est, cum tempus sit numerus motus, cuius vel qualis motus sit numerus.
Deinde cum dicit: aut cuiuslibet etc., solvit dubitationem.
Et primo excludit falsam solutionem; secundo ponit veram, ibi: quoniam autem est loci mutatio etc..
Circa primum tria facit: primo ponit solutionem falsam; secundo improbat eam ducendo ad inconveniens, ibi: sed est nunc moveri etc.; tertio ostendit illud inconveniens esse impossibile, ibi: aut non: omne namque etc..
Est ergo prima solutio, quod tempus sit numerus cuiuslibet motus.
Et ad hoc probandum inducit quod omnis motus est in tempore; scilicet et generatio et augmentum et alteratio et loci mutatio. Quod autem convenit omni motui, convenit motui secundum quod ipsum: esse autem in tempore est numerari tempore. Sic igitur videtur quod quilibet motus, inquantum huiusmodi, habet numerum: unde cum tempus sit numerus motus, videtur sequi quod tempus sit numerus motus continui universaliter, et non alicuius determinati motus.
Deinde cum dicit: sed est nunc moveri etc., improbat praedictam solutionem.
Contingit enim aliqua duo simul moveri: si ergo cuiuslibet motus tempus sit numerus, sequetur quod duorum motuum simul existentium sit alterum et alterum tempus: et sic ulterius sequetur quod duo tempora aequalia sint simul, utpote duo dies vel duae horae. Duo autem tempora inaequalia simul esse, non est admirabile, ut diem et horam.
Deinde cum dicit: aut non: omne namque tempus etc., ostendit hoc esse impossibile, scilicet duo tempora aequalia simul esse: quia omne tempus quod est simul et similiter, idest aequaliter, est unum tantum: sed tempus quod non est simul, non est unum numero; sed species eius est una, sicut dies cum die, et annus cum anno.
Et hoc manifestat per simile in aliis numeratis.
Si enim sunt septem equi et septem canes, non differunt secundum numerum, sed differunt secundum speciem rerum numeratarum.
Et similiter omnium motuum qui simul terminantur et secundum principium et secundum finem, est idem tempus: sed motus differunt secundum proprias rationes, inquantum forte unus est velox et alius tardus, et unus est loci mutatio et alius alteratio. Sed tempus est idem, si alterationis et loci mutationis sit aequalis numerus, supposito quod sint simul. Et propter hoc oportet quod motus sint alteri et divisi ab invicem, sed tempus in omnibus est idem: quia unus et idem numerus est eorum quae sunt aequalia et simul, ubicumque sint.
Deinde cum dicit: quoniam autem est loci mutatio etc., ponit veram solutionem.
Et circa hoc tria facit: primo praemittit, quaedam quae sunt necessaria ad solutionem; secundo ex praemissis solutionem concludit, ibi: si igitur quod primum etc.; tertio manifestat solutionem per dicta aliorum, ibi: unde et videtur etc..
Circa primum praemittit tria.
Quorum primum est, quod inter alios motus, primus et magis simplex et regularis est motus localis; et inter alios motus locales, motus circularis, ut in octavo probabitur.
Secundum est quod unumquodque numeratur uno quodam proximo, idest sui generis, sicut unitates unitate, et equi equo, ut patet in X metaphys.: unde oportet quod tempus quodam determinato tempore mensuretur, sicut videmus quod omnia tempora mensurantur per diem.
Tertium quod praemittit est, quod tempus mensuratur motu et motus tempore, ut supra dictum est: et hoc ideo est, quia aliquo determinato motu, et aliquo determinato tempore, mensuratur quantitas cuiuslibet motus et temporis.
Deinde cum dicit: si igitur quod primum mensura est etc., concludit ex praemissis, quod si aliquid quod est primum, est mensura omnium proximorum, idest omnium quae sunt sui generis, necesse est quod circulatio, quae est maxime regularis, sit mensura omnium motuum. Dicitur autem motus regularis, qui est unus et uniformis. Haec autem regularitas non potest inveniri in alteratione et augmento, quia non sunt usquequaque continui nec aequalis velocitatis. Sed in loci mutatione inveniri potest regularitas, quia potest esse aliquis motus localis continuus et uniformis; et talis est solus motus circularis, ut in octavo probabitur.
Et inter alios motus circulares, maxime uniformis et regularis est primus motus, qui revolvit totum firmamentum motu diurno: unde illa circulatio, tanquam prima et simplicior et regularior, est mensura omnium motuum. Oportet autem motum regularem esse mensuram seu numerum aliorum, quia omnis mensura debet esse certissima; et talia sunt quae uniformiter se habent.
Ex hoc igitur colligere possumus, quod si prima circulatio mensurat omnem motum, et motus mensurantur a tempore, inquantum mensurantur quodam motu; necesse est dicere quod tempus sit numerus primae circulationis, secundum quam mensuratur tempus, et ad quem mensurantur omnes alii motus temporis mensuratione.
Deinde cum dicit: unde et videtur tempus etc., approbat praedictam solutionem per opiniones aliorum.
Et primo per opinionem errantium, qui moti fuerunt ad dicendum quod motus sphaerae caelestis sit tempus, propter hoc quod hoc motu mensurantur omnes alii motus, et tempus mensuratur hoc motu: manifestum est enim quod dicimus diem vel annum completum, attendentes ad motum caeli.
Secundo ex usu communiter loquentium, ibi: propter hoc autem etc..
Et dicit quod propter hoc, scilicet quod tempus est numerus circulationis primae, accidit quod consuevit dici, scilicet quod quidam circulus sit in rebus humanis, et in aliis quae moventur naturaliter et generantur et corrumpuntur. Quod ideo est, quia omnia huiusmodi mensurantur tempore, et accipiunt principium et finem in tempore, ac si tempus secundum quandam circulationem sit: quia et ipsum tempus videtur esse quidam circulus. Et hoc iterum videtur propter hoc, quod est mensura circulationis, et etiam a tali circulatione mensuratur. Et ideo dicere quod eorum quae fiunt in tempore, est quidam circulus, nihil est aliud quam dicere temporis esse quendam circulum; quod accidit propter hoc quod tempus mensuratur circulatione. Illud enim quod mensuratur, non videtur esse aliud quam mensura: sed multae mensurae videntur facere unum totum, sicut multae unitates unum numerum, et multae mensurae panni unam quantitatem panni. Et hoc verum est, quando accipitur mensura unius generis.
Sic igitur patet quod tempus primo mensurat et numerat primum motum circularem, et per eum mensurat omnes alios motus. Unde est unum tempus tantum propter unitatem primi motus; et tamen quicumque sentit quemcumque motum, sentit tempus, eo quod ex primo motu causatur mutabilitas in omnibus mobilibus, ut supra dictum est.
Deinde cum dicit: dicitur autem recte etc., manifestat quoddam, quod supra dixerat, qualiter sit intelligendum.
Dixerat enim quod idem est numerus septem canum et septem equorum. Quomodo ergo hoc sit verum ostendit: et dicit quod recte potest dici, si aequalis est numerus aliquarum rerum diversarum, puta ovium et canum, quod idem sit numerus utrorumque, ut puta si tam oves quam canes sint decem. Sed non potest dici quod hoc ipsum quod est esse decem, sit idem canum et ovium: non enim eadem decem sunt decem canes et decem oves. Et hoc ideo, quia genus potest cum additione unitatis vel identitatis praedicari de pluribus individuis existentibus in una specie, et similiter genus remotum de pluribus speciebus existentibus sub uno genere propinquo; neque tamen species de individuis, neque genus propinquum de speciebus diversis potest praedicari cum additione unitatis vel identitatis.
Et huius consequenter ponit exemplum.
Sunt enim duae species trianguli, scilicet aequilaterus, idest habens tria latera aequalia, et gradatus, idest habens tria latera inaequalia; figura autem est genus trianguli. Non ergo possumus dicere quod aequilaterus et gradatus sit idem triangulus; sed possumus dicere quod sunt eadem figura, quia utrumque continetur sub triangulo, qui est una species figurae.
Et huius assignat rationem: quia cum idem et diversum seu differens opponantur, ibi possumus identitatem dicere, ubi differentia non invenitur; sed non possumus dicere identitatem, ubi invenitur differentia. Manifestum est autem quod aequilaterus et gradatus differunt ad invicem differentia trianguli, idest quae est proprie trianguli divisiva; et hoc ideo quia sunt diversae species trianguli. Sed aequilaterus et gradatus non differunt secundum differentiam figurae, sed sub una et eadem differentia divisiva figurae continentur.
Et hoc sic patet. Si enim dividamus figuram in suas species, quae per differentias constituuntur, invenietur quod alia erit circulus, et alia triangulus, et sic de aliis speciebus figurae; sed si dividamus triangulum, inveniemus quod alia species eius est aequilaterus, et alia gradatus. Manifestum est igitur quod aequilaterus et gradatus sunt una figura, quia continentur sub una specie figurae, quae est triangulus: sed non sunt unus triangulus, quia sunt diversae trianguli species.
Et similiter est in proposito. Numerus enim dividitur in diversas species, quarum una est decem. Omnia ergo quae sunt decem, dicuntur habere unum numerum; quia non differunt ad invicem secundum speciem numeri, cum contineantur sub una numeri specie. Sed non potest dici quod sint eadem decem; quia ea quibus applicatur numerus denarius, differunt, cum quaedam horum sint canes et quaedam equi.
Videtur autem hoc introduxisse Aristoteles, ne aliquis ad sustinendam unitatem temporis sit contentus eo quod dicitur unum numerum esse aequalium numero, licet diversorum: quia licet sit idem denarius vel ternarius propter unitatem speciei, non tamen est idem denarius vel ternarius propter diversitatem quae est secundum numerum ex parte materiae. Unde secundum istam rationem sequeretur quod tempus esset unum specie, sed non numero.
Et ideo ad accipiendam veram temporis unitatem, oportet recurrere ad unitatem primi motus, qui primo mensuratur tempore, et quo etiam mensuratur tempus.
Ultimo autem epilogando concludit, dictum esse de tempore, et de iis quae sunt propria ad considerationem temporis.