IN LIBROS PHYSICORUM

 LIBER 1

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 LIBER 2

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 LIBER 3

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 LIBER 4

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 Lectio 16

 Lectio 17

 Lectio 18

 Lectio 19

 Lectio 20

 Lectio 21

 Lectio 22

 Lectio 23

 LIBER 5

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 LIBER 6

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 LIBER 7

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 LIBER 8

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 Lectio 16

 Lectio 17

 Lectio 18

 Lectio 19

 Lectio 20

 Lectio 21

 Lectio 22

 Lectio 23

Lectio 9

Postquam philosophus determinavit de divisione motus, hic determinat de finito et infinito in motu: sicut enim divisio pertinet ad rationem continui, ita finitum et infinitum. Sicut autem supra ostendit quod divisio simul invenitur in motu, magnitudine, tempore et mobili; ita ostendit nunc idem de infinito.

Unde circa hoc tria facit: primo ostendit quod infinitum similiter invenitur in magnitudine et tempore; secundo quod similiter cum his invenitur etiam in mobili, ibi: demonstratis autem his etc.; tertio quod similiter invenitur in motu, ibi: quoniam autem neque finitum etc..

Circa primum duo facit: primo ostendit quod si magnitudo est finita, tempus non potest esse infinitum; secundo quod e converso si tempus est finitum, quod magnitudo non potest esse infinita, ibi: eadem autem ratio etc..

Circa primum duo facit: primo proponit quod intendit; secundo probat propositum, ibi: quod igitur si aliquid moveatur etc..

Primo ergo repetit duo quae sunt necessaria ad propositum ostendendum.

Quorum unum est, quod omne quod movetur, in tempore movetur; secundum est, quod in pluri tempore ab eodem mobili pertransitur maior magnitudo. Et ex his duobus suppositis intendit probare tertium, scilicet quod impossibile sit in tempore infinito pertransire magnitudinem finitam. Quod tamen sic intelligendum est, quod non reiteretur illud quod movetur per eandem magnitudinem, aut per aliquam partem eius multoties: sed ita quod in toto tempore moveatur per totam magnitudinem. Et addidit hoc, ut praeservaret se a motu circulari, qui est super magnitudine finita, et tamen potest esse in tempore infinito, ut ipse dicet in octavo.

Deinde cum dicit: quod igitur etc., probat propositum: et primo si detur mobile quod aeque velociter moveatur per totam magnitudinem; secundo si non uniformiter et regulariter moveatur, ibi: sed si non sit etc..

Dicit ergo primo, quod si sit aliquod mobile quod aeque velociter moveatur per totum, necesse est, si pertransit finitam magnitudinem, quod hoc sit in tempore finito.

Accipiatur enim una pars magnitudinis, quae mensuret totum; puta sit tertia vel quarta pars magnitudinis. Si ergo mobile aeque velociter movetur per totum, et aeque velox est quod aequale spatium in aequali tempore pertransit, sequitur quod in aequalibus temporibus, et tot quot sunt partes magnitudinis, pertranseat mobile totam magnitudinem: puta, si accepta sit quarta pars magnitudinis, eam pertransibit in aliquo tempore, et aliam quartam in alio tempore aequali; et sic totam magnitudinem pertransit in quatuor aequalibus temporibus.

Quia ergo partes magnitudinis sunt finitae numero, et unaquaeque etiam est finita secundum quantitatem, et tot modis pertransit omnes partes, idest in totidem temporibus aequalibus; sequitur quod totum tempus in quo pertransit totam magnitudinem, sit finitum.

Mensurabitur enim a tempore finito: quia erit toties tantum quantum est tempus in quo pertransit partem, quoties magnitudo tota est tanta quanta est pars. Et sic totum tempus erit multiplicatum secundum multiplicationem partium. Omne autem multiplicatum mensuratur a submultiplici, sicut duplum a dimidio, et triplum a subtriplo, et sic de aliis. Tempus autem quo pertransit partem est finitum: quia si detur quod sit infinitum, sequetur quod in aequali tempore pertranseat totum et partem; quod est contra id quod suppositum est. Et sic oportet quod totum tempus sit finitum; quia nullum infinitum mensuratur a finito.

Sed quia posset aliquis dicere, quod licet partes magnitudinis sint aequales, et mensurent totam magnitudinem, tamen potest contingere quod partes temporis non sunt aequales, sicut quando non est aequalis velocitas in toto motu; et sic tempus quo movetur per partem magnitudinis, non mensurabit tempus quo movetur per totam: ideo consequenter ibi: sed si non sit etc., ostendit quod hoc nihil differt quantum ad propositum.

Sit enim ab spatium finitum, quod pertransitum sit in tempore infinito quod est cd.

Necesse est autem in omni motu, quod prius pertranseatur una pars quam altera: et hoc etiam manifestum est, quod in priori parte temporis et posteriori, altera et altera pars magnitudinis pertransitur. Et ita oportet quod neque duae partes magnitudinis pertranseantur in una et eadem parte temporis; neque quod in duabus partibus temporis pertranseatur una et eadem pars magnitudinis. Et sic oportet, si in aliquo tempore pertransita est aliqua pars magnitudinis, quod in pluri tempore pertranseatur non solum illa pars magnitudinis, sed etiam cum hac et altera: et hoc indifferenter, sive aeque velociter moveatur mobile, sive non; vel per hoc quod velocitas semper magis ac magis intenditur, sicut in motibus naturalibus, vel per hoc quod magis et magis remittitur, sicut in motibus violentis.

His igitur suppositis, accipiatur aliqua pars spatii ab, quae quidem pars sit ae, et mensuret totum ab, ita scilicet quod sit aliquota pars eius, vel tertia vel quarta. Haec igitur pars spatii pertransita est in aliquo tempore finito. Non enim potest dari quod sit pertransita in tempore infinito; quia totum spatium pertransitum est in tempore infinito, et in minori pertransitur pars quam totum.

Item accipiamus aliam partem spatii quae sit aequalis parti ae, et eadem ratione necesse est quod haec pars pertranseatur in tempore finito, quia totum spatium pertransitur in tempore infinito.

Et sic semper accipiendo, accipiam tot tempora finita, quot sunt partes spatii; ex quibus constituetur totum tempus, in quo movetur per totum spatium.

Impossibile est autem quod aliqua pars infiniti mensuret totum, neque secundum magnitudinem neque secundum multitudinem: quia impossibile est quod infinitum constet ex partibus finitis numero, quarum etiam unaquaeque sit finita quantitate, sive dicatur quod illae partes sint aequales, sive quod sint inaequales; quia quaecumque mensurantur a quodam uno, sive secundum multitudinem sive secundum magnitudinem, oportet ea esse finita.

Ideo autem dico multitudinem et magnitudinem, quia nihil minus mensuratur aliquid per hoc quod habet finitam magnitudinem, sive partes mensurantes sint aequales sive inaequales. Quando enim sunt aequales, tunc pars mensurat totum et multitudine et magnitudine; quando vero sunt inaequales, mensurat multitudine, sed non magnitudine. Sic ergo patet quod omne tempus quod habet partes finitas numero et quantitate, sive sint aequales sive inaequales, est finitum. Sed spatium finitum mensuratur aliquibus finitis, ex quantis contingit componi ab; et oportet esse aequales numero partes temporis et partes magnitudinis, et quaslibet esse finitas quantitate: ergo relinquitur quod per totum spatium moveatur in tempore finito.

Deinde cum dicit: eadem autem ratio est etc., ostendit quod e converso, si tempus est finitum, et magnitudo est finita.

Et dicit quod per eandem rationem potest ostendi, quod infinitum spatium non potest pertransiri in tempore finito: neque iterum potest quies esse infinita in tempore finito: et hoc indifferenter, sive moveatur aliquid regulariter, idest aeque velociter, sive non regulariter.

Quia ex quo tempus ponitur finitum, accipiatur aliqua pars temporis quae mensuret totum tempus, in qua mobile pertransit aliquam partem magnitudinis (non autem totam, quia totam pertransit in toto tempore); et iterum in aequali tempore pertransit aliam partem magnitudinis. Et similiter pro unaquaque parte temporis accipietur aliqua pars magnitudinis: et hoc indifferenter, sive pars magnitudinis secundo accepta, sit aequalis primae parti (quod contingit quando aeque velociter movetur), sive sit inaequalis (quod contingit quando non aeque velociter movetur)p hoc enim nihil differt, dummodo ponatur quod quaelibet pars magnitudinis accepta sit finita: quod oportet dicere; alioquin tantum moveretur in parte temporis, quantum in toto. Sic enim manifestum est quod per divisionem temporis auferetur totum spatium infinitum per aliquam finitam ablationem: quia cum tempus dividatur in partes finitas aequales, et tot oporteat esse partes magnitudinis quot temporis, sequitur quod spatium infinitum consumetur, facta finita ablatione, eo quod tot modis oportet dividi magnitudinem sicut et tempus. Hoc autem est impossibile.

Ergo manifestum est quod infinitum spatium non pertransitur in tempore finito. Et hoc indifferenter, sive magnitudo spatii sit infinita ex una parte, sive ex utraque: quia eadem ratio est de utroque.

Deinde cum dicit: demonstratis autem his etc., ostendit quod infinitum et finitum similiter invenitur in mobili, sicut in magnitudine et tempore.

Et circa hoc tria facit: primo ostendit quod mobile non est infinitum, si tempus et magnitudo sint finita; secundo quod mobile non est infinitum, si magnitudo sit infinita et tempus finitum, ibi: at vero neque infinitum etc.; tertio quod mobile non potest esse infinitum, si magnitudo sit finita et tempus infinitum, ibi: amplius autem et tempore etc..

Primum ostendit duabus rationibus. Circa quarum primam dicit quod demonstrato quod magnitudo finita non pertransitur tempore infinito, neque infinita finito, manifestum est ex eadem causa, quod neque infinitum mobile potest pertransire finitam magnitudinem in tempore finito. Accipiatur enim aliqua pars temporis finiti. In illa parte spatium finitum pertransibit non totum mobile, sed pars mobilis, et in alia parte temporis similiter, et sic de aliis. Et sic oportebit accipere tot partes mobilis, quot accipiuntur partes temporis. Infinitum autem non componitur ex partibus finitis, ut ostensum est.

Ergo sequetur quod mobile quod movetur in toto tempore finito, sit finitum.

Secundam rationem ponit ibi: quoniam autem finitum etc..

Et differt haec secunda ratio a priori, quia in priori assumebatur pro principio idem medium ex quo superius demonstrabat: hic autem accipitur pro principio ipsa conclusio superius demonstrata. Ostensum est enim supra, quod mobile finitum non potest pertransire spatium infinitum in tempore finito: unde manifestum est quod eadem ratione nec mobile infinitum potest pertransire spatium finitum in tempore finito.

Quia si infinitum mobile pertransit spatium finitum, sequitur quod etiam finitum mobile pertranseat spatium infinitum: quia cum tam mobile quam spatium sit quantum, datis duobus quantis, nihil differt quod eorum moveatur, et quod quiescat. Hoc enim habebitur pro spatio, quod quiescit; et illud pro mobili, quod movetur.

Manifestum est enim quod quodcumque ponatur moveri, sequitur quod finitum pertranseat infinitum. Moveatur enim infinitum quod est a, et sit aliqua pars eius finita quae est cd. Quando totum movetur, haec pars finita erit secundum aliquod signum spatii, quod sit b; et continuato motu, iterum alia pars infiniti mobilis fiet iuxta illud spatium, et sic semper. Unde sicut mobile pertransit spatium, ita spatium quodammodo pertransit mobile, inquantum successive alternantur diversae partes mobilis iuxta spatium. Unde patet quod simul accidit infinitum mobile moveri per finitum spatium, et finitum transire infinitum. Non enim aliter est possibile quod infinitum moveatur per spatium finitum, quam quod finitum pertranseat infinitum: aut ita quod finitum feratur per infinitum, sicut quando mobile est finitum et spatium infinitum; aut ita quod saltem finitum metiatur infinitum, sicut cum spatium est finitum et mobile infinitum. Tunc enim, licet finitum non feratur per infinitum, tamen finitum mensurat infinitum, inquantum finitum spatium fit iuxta singulas partes mobilis infiniti. Quia ergo hoc est impossibile, sequitur quod infinitum mobile non pertransit spatium finitum in tempore finito.

Deinde cum dicit: at vero neque infinitum etc., ostendit quod non potest esse mobile infinitum, spatio existente infinito et tempore finito. Et hoc est quod dicit, quod infinitum mobile non pertransit infinitum spatium in tempore finito. In omni enim infinito est aliquid finitum: si igitur mobile infinitum pertranseat spatium infinitum in tempore finito, sequitur quod pertranseat spatium finitum in tempore finito; quod est contra praeostensa.

Deinde cum dicit: amplius autem etc., dicit quod eadem demonstratio erit, si accipiatur tempus infinitum et spatium finitum. Quia si pertransit infinitum mobile finitum spatium in tempore infinito, sequitur quod in aliqua parte temporis finiti pertranseat aliquam partem spatii: et ita infinitum pertransibit finitum in tempore finito; quod est contra praeostensa.

Deinde cum dicit: quoniam autem neque finitum etc., ostendit quod finitum et infinitum similiter invenitur in motu, sicut et in praemissis.

Et dicit quod quia finitum mobile non pertransit spatium infinitum, neque infinitum mobile finitum spatium, neque infinitum mobile infinitum spatium in tempore finito; sequitur ex his quod non possit esse motus infinitus in tempore finito. Quantitas enim motus accipitur secundum quantitatem spatii: unde non differt motum dicere infinitum aut magnitudinem. Necesse est enim, si unum eorum fuerit infinitum, et alterum infinitum esse, quia non potest esse aliqua pars loci mutationis extra locum.