So much for the conception and generation of birds.
It has been previously stated that fishes are not all oviparous. Fishes of the cartilaginous genus are viviparous; the rest are oviparous. And cartilaginous fishes are first oviparous internally and subsequently viviparous; they rear the embryos internally, the batrachus or fishing-frog being an exception.
Fishes also, as was above stated, are provided with wombs, and wombs of diverse kinds. The oviparous genera have wombs bifurcate in shape and low down in position; the cartilaginous genus have wombs shaped like those of O birds. The womb, however, in the cartilaginous fishes differs in this respect from the womb of birds, that with some cartilaginous fishes the eggs do not settle close to the diaphragm but middle-ways along the backbone, and as they grow they shift their position.
The egg with all fishes is not of two colours within but is of even hue; and the colour is nearer to white than to yellow, and that both when the young is inside it and previously as well.
Development from the egg in fishes differs from that in birds in this respect, that it does not exhibit that one of the two navel-strings that leads off to the membrane that lies close under the shell, while it does exhibit that one of the two that in the case of birds leads off to the yolk. In a general way the rest of the development from the egg onwards is identical in birds and fishes. That is to say, development takes place at the upper part of the egg, and the veins extend in like manner, at first from the heart; and at first the head, the eyes, and the upper parts are largest; and as the creature grows the egg-substance decreases and eventually disappears, and becomes absorbed within the embryo, just as takes place with the yolk in birds.
The navel-string is attached a little way below the aperture of the belly. When the creatures are young the navel-string is long, but as they grow it diminishes in size; at length it gets small and becomes incorporated, as was described in the case of birds. The embryo and the egg are enveloped by a common membrane, and just under this is another membrane that envelops the embryo by itself; and in between the two membranes is a liquid. The food inside the stomach of the little fishes resembles that inside the stomach of young chicks, and is partly white and partly yellow.
As regards the shape of the womb, the reader is referred to my treatise on Anatomy. The womb, however, is diverse in diverse fishes, as for instance in the sharks as compared one with another or as compared with the skate. That is to say, in some sharks the eggs adhere in the middle of the womb round about the backbone, as has been stated, and this is the case with the dog-fish; as the eggs grow they shift their place; and since the womb is bifurcate and adheres to the midriff, as in the rest of similar creatures, the eggs pass into one or other of the two compartments. This womb and the womb of the other sharks exhibit, as you go a little way off from the midriff, something resembling white breasts, which never make their appearance unless there be conception.
Dog-fish and skate have a kind of egg-shell, in the which is found an egg-like liquid. The shape of the egg-shell resembles the tongue of a bagpipe, and hair-like ducts are attached to the shell. With the dog-fish which is called by some the 'dappled shark', the young are born when the shell-formation breaks in pieces and falls out; with the ray, after it has laid the egg the shell-formation breaks up and the young move out. The spiny dog-fish has its close to the midriff above the breast like formations; when the egg descends, as soon as it gets detached the young is born. The mode of generation is the same in the case of the fox-shark.
The so-called smooth shark has its eggs in betwixt the wombs like the dog-fish; these eggs shift into each of the two horns of the womb and descend, and the young develop with the navel-string attached to the womb, so that, as the egg-substance gets used up, the embryo is sustained to all appearance just as in the case of quadrupeds. The navel-string is long and adheres to the under part of the womb (each navel-string being attached as it were by a sucker), and also to the centre of the embryo in the place where the liver is situated. If the embryo be cut open, even though it has the egg-substance no longer, the food inside is egg-like in appearance. Each embryo, as in the case of quadrupeds, is provided with a chorion and separate membranes. When young the embryo has its head upwards, but downwards when it gets strong and is completed in form. Males are generated on the left-hand side of the womb, and females on the right-hand side, and males and females on the same side together. If the embryo be cut open, then, as with quadrupeds, such internal organs as it is furnished with, as for instance the liver, are found to be large and supplied with blood.
All cartilaginous fishes have at one and the same time eggs above close to the midriff (some larger, some smaller), in considerable numbers, and also embryos lower down. And this circumstance leads many to suppose that fishes of this species pair and bear young every month, inasmuch as they do not produce all their young at once, but now and again and over a lengthened period. But such eggs as have come down below within the womb are simultaneously ripened and completed in growth.
Dog-fish in general can extrude and take in again their young, as can also the angel-fish and the electric ray-and, by the way, a large electric ray has been seen with about eighty embryos inside it-but the spiny dogfish is an exception to the rule, being prevented by the spine of the young fish from so doing. Of the flat cartilaginous fish, the trygon and the ray cannot extrude and take in again in consequence of the roughness of the tails of the young. The batrachus or fishing-frog also is unable to take in its young owing to the size of the head and the prickles; and, by the way, as was previously remarked, it is the only one of these fishes that is not viviparous.
So much for the varieties of the cartilaginous species and for their modes of generation from the egg.