Postquam philosophus ostendit quod motus reflexus non potest esse continuus et unus, hic secundum praemissa solvit quasdam dubitationes.
Et dividitur in partes tres, secundum tres dubitationes quas ex praemissis solvit: secunda pars incipit ibi: eodem autem modo obviandum est etc.; tertia ibi: manifestum autem etc..
Circa primum duo facit: primo ponit dubitationem; secundo solvit eam, ibi: non ergo ponendum est etc..
Dicit ergo primo, quod hoc quod dictum est ad probandum quod motus reflexus non est continuus, potest etiam dici ad solvendum quandam dubitationem.
Est enim una talis dubitatio. Sint duae magnitudines aequales, quarum una dicatur e et alia z. Sint etiam duo mobilia aequaliter velocia, quorum unum sit a et aliud sit d; et moveatur a continue ab extremo, idest principio magnitudinis, ad c; d vero feratur ad I. Et ponamus quod in magnitudine quae est e, signetur quoddam signum medium quod est b, quod tantum distet a c, quantum in magnitudine quae est z, distat z ab I. Et ponamus quod simul dum a in suo motu continuo accedit ad b signum, quod d mobile in suo motu continuo recedat a z, et veniat ad I. Cum ergo motus sint regulares et aeque veloces utriusque mobilis, sequetur quod prius veniet d in I, quam a veniat in c: quia quod prius recedit, prius perveniet ad finem aequalis magnitudinis; prius autem recessit d a z, quam a recederet a b, quia d recessit a z quando a pertingebat ad b.
Ergo secundum hoc a non simul advenit in b, et recessit ab eo; et ita sequitur quod posterius recesserit quam advenerit: quia si simul adveniret et recederet, non posterius moveri inciperet. Et ita necessitas est quod a, dum continue fertur, quiescat in b: et sic motus continuus erit compositus ex quietibus, sicut zeno ponebat, ut supra habitum est in sexto.
Deinde cum dicit: non ergo ponendum etc., solvit motam dubitationem secundum praemissa. Supponebat enim obiectio praedicta quod a, dum continue movetur, accedit ad aliquod signum in medio magnitudinis positum, scilicet ad b, et quod simul dum accedit a ad b, d recedit a quodam alio signo, scilicet a z; quod est contra praemissa. Dictum est enim supra, quod cum aliquid continue fertur, neque potest adesse neque abesse, idest recedere et accedere, a signo medio.
Ergo non est ponendum hoc quod obiectio supponebat, quod cum a affuit, idest accessit ad b, ipsum d simul recessit a z: quia si detur quod a accessit ad b, erit pari ratione dare quod recesserit, et quod hoc non fuerit simul, sed in duobus instantibus, ita quod in tempore intermedio quieverit.
Sed sicut dictum est prius, cum aliquid continue movebatur, in aliquo signo medio non aberat et aderat, sed simpliciter erat; non quidem per aliquod tempus, quia sic quiesceret, sed in decisione temporis, idest in aliquo nunc, quod dividit tempus.
Hoc ergo quod obiectio supponebat, scilicet quod a adesset, et quod d abesset ab aliquo signo medio, impossibile est dicere in motu continuo.
Sed in reflexo necesse est ut ita dicatur.
Si enim aliquod mobile quod est I, feratur ad punctum quod est d, et iterum reflectatur, manifestum est quod mobile utitur ultimo quod est d, quasi principio et quasi fine, scilicet uno signo ut duobus: unde necesse est quod ibi quiescat.
Nec est dicendum quod simul accesserit ad ipsum d, et recesserit ab eodem: quia sequeretur quod simul in eodem instanti esset ibi et non esset. Omne enim quod motum est, est in termino ad quem movebatur; et omne quod incipit moveri, non est in termino a quo incipit moveri: hoc autem significatur, cum dicimus adesse vel accedere, quod est terminari motum ad punctum illud; cum autem dicimus abesse vel recedere, significamus motum incipere. Unde necesse est omne quod accedit vel adest ad aliquod signum, esse in eo: quod autem abest vel abscedit, non esse in eo. Quia ergo impossibile est simul esse et non esse in aliquo signo, per consequens impossibile est quod simul adsit et absit eidem, ut superius pluries est suppositum.
Est autem hic attendendum quod aliter utitur hic litteris quam supra. Utitur enim hic I pro mobili, d vero pro termino: supra autem e converso.
Non est autem in motu reflexo danda solutio, quae prius data est in motu continuo.
Non enim potest dici quod mobile quod est I, sit in termino quod est d, a quo incipit reflecti, solum in decisione temporis, idest in nunc; et quod mobile neque affuerit neque defuerit eidem, sicut dicebatur in motu continuo: quia in motu reflexo necesse est venire ad finem qui est actu finis, et non in potentia tantum, sicut medium in motu continuo erat principium et finis solum in potentia.
Illud ergo quod est in medio motus continui, est in potentia tantum principium et finis; sed hoc a quo incipit reflexio, est actu principium et finis: finis quidem motus qui erat deorsum, puta lapidis; principium autem est in actu motus reflexi qui est sursum, dum lapis cadens in terram resilit sursum.
Sicut ergo in magnitudine in qua est motus, signum a quo reflectitur est principium et finis in actu; ita et in ipsis motibus est accipere actu finem unius et principium alterius: quod non esset, nisi quies interveniret media. Necesse est ergo quod id quod reflectitur in linea recta, quiescat. Et ita sequitur quod in recta magnitudine non possit esse motus continuus et perpetuus: quia magnitudo recta non est infinita, et ita non posset esse in perpetuum motus rectus continuus, nisi reflecteretur.
Deinde cum dicit: eodem autem modo obviandum etc., ponit secundam dubitationem.
Et circa hoc tria facit: primo movet dubitationem; secundo excludit quandam solutionem supra in sexto positam, ibi: in primis igitur etc.; tertio ponit veram solutionem, ibi: sed verum dicendum etc..
Dicit ergo primo, quod eodem modo per ea quae supra ostensa sunt, possumus obviare ad eos qui ponunt obiectionem zenonis, qui sic volebant argumentari.
Omne quod movetur oportet quod prius pertranseat medium quam perveniat ad finem: sed inter quoslibet duos terminos sunt infinita media, propter hoc quod magnitudo est divisibilis in infinitum; et ita impossibile est transire media, quia infinita non contingit transire: ergo nihil potest movendo ad aliquem terminum pervenire.
Vel potest eadem dubitatio aliter formari, sicut quidam eam proponunt.
Omne quod pertransit aliquod totum, prius pertransit medietatem: et cum medietas iterum dividatur in medietatem, oportet quod prius pertransierit medietatem medietatis: et ita omne quod movetur, numerat quamlibet medietatem, pertingendo ad ipsam. Sed medietates sic accipi possunt in infinitum: ergo sequitur quod si aliquid pertransit totam magnitudinem, quod numeravit numerum infinitum; quod est manifeste impossibile.
Deinde cum dicit: in primis igitur rationibus etc., excludit solutionem quam supra in sexto posuerat ad hanc obiectionem: et primo recitat eam; secundo excludit, ibi: sed haec solutio etc..
Dicit ergo primo quod praedicta obiectio soluta est supra in sexto, cum de motu in communi agebatur, per hoc quod sicut magnitudo dividitur in infinitum, ita et tempus; et sic eodem modo tempus habet in seipso infinita, sicut et magnitudo. Et ita non est inconveniens si infinita quae sunt in magnitudine, transeat aliquis in infinitis quae sunt in tempore: quia non est inconveniens quod infinita magnitudo transeatur tempore infinito; sed sicut in sexto ostensum est, infinitum eodem modo invenitur in magnitudine et in tempore.
Deinde cum dicit: sed haec solutio etc., excludit hanc solutionem.
Et dicit quod haec solutio sufficiens est ad obviandum interroganti qui sic interrogabat: an contingeret in tempore finito transire et numerare infinita. Quae quidem interrogatio repellebatur per hoc quod dicitur, quod tempus finitum habet infinita, in quibus possunt transiri infinita quae sunt in magnitudine. Sed ista solutio non sufficit ad rei veritatem: quia si aliquis praetermittat quaerere de magnitudine; et praetermittat interrogare an in tempore finito contingat infinita transire; et faciat hanc eandem interrogationem de ipso tempore, utrum scilicet infinita quae sunt in tempore possint transiri, propter hoc quod tempus in infinitum dividitur: ad hanc interrogationem non sufficiet praedicta solutio, et ideo oportet aliam solutionem quaerere.
Deinde cum dicit: sed verum dicendum est etc., ponit veram solutionem, secundum ea quae supra praemiserat.
Et dicit quod secundum veritatem hoc dicendum est ad solutionem dubitationis motae, illud quod praemisimus in rationibus supra positis proxime, scilicet quod si aliquis dividat continuum in duo media, tunc utitur uno signo, scilicet in quo dividitur continuum, tanquam duobus, quia facit ipsum et principium unius partis, et finem alterius. Facit autem hoc numerando, et in duo media dividendo.
Cum autem sic divisum fuerit continuum, iam non erit continuum, sive dividatur magnitudo, ut linea, sive dividatur motus: quia nec motus potest esse continuus nisi sit continui, scilicet et subiecti et temporis et magnitudinis super quam transit motus. Sic ergo dividens numerat, et numerando continuitatem solvit.
Sed in continuo dum continuitas durat, sunt infinita media non in actu, sed in potentia: quia si faciat aliquis aliquod medium esse in actu, hoc erit per divisionem, ut dictum est, in quantum accipietur ut principium unius et finis alterius; et sic non remanebit continuum, sed stabit; idest iam media in actu non erunt infinita, sed in eis erit status. Quod maxime accidit in eo qui vult numerare media: quia necesse est ei quod unum signum numeret quasi duo, inquantum est unius medietatis finis, et alterius principium. Et hoc dico quando non numeratur totum continuum ut unum, sed numerantur duae medietates in ipso. Si enim accipietur totum continuum ut unum, tunc iam dictum est quod signum medium non accipitur ut finis et principium in actu, sed in potentia tantum.
His ergo visis, respondendum est ad eum qui interrogat an contingat infinita transire sive in tempore sive in magnitudine, quod quodammodo contingit, et quodammodo non contingit. Cum enim sint infinita in actu, non contingit ea transire: cum autem sint infinita in potentia, contingit. Et sic cum in continuo non sint infinita media nisi in potentia, contingit infinita transire: quia illud quod continue movetur, secundum accidens transivit infinita, scilicet in potentia. Per se enim transivit lineam finitam, cui accidit quod insint ei infinita media in potentia; sed ipsa linea secundum substantiam et rationem est alia ab illis mediis infinitis. Non enim linea componitur ex punctis: sed puncta possunt signari in linea, inquantum dividitur.
Deinde cum dicit: manifestum autem et quia etc., solvit tertiam dubitationem.
Et circa hoc tria facit: primo ponit dubitationem et solutionem; secundo manifestat utrumque per exempla, ibi: sit tempus etc.; tertio infert quoddam corollarium ex dictis, ibi: si autem quodcumque etc..
Ponit ergo dubitationem primo, quae solet fieri in generationibus et corruptionibus.
Quod enim generatur, desinit non esse et incipit esse. Oportet autem aliud tempus assignari ei quod est esse rei generatae vel corruptae, et aliud ei quod est non esse: puta si ex aere generetur ignis, in toto tempore ab erat non ignis sed aer; in toto autem tempore bc est ignis. Cum ergo hoc signum temporis quod est b, sit utrique tempori commune, videtur quod in illo instanti communi sit simul esse ignis et non esse eiusdem.
Hanc ergo dubitationem philosophus solvens, dicit manifestum esse quod nisi aliquis illud signum temporis, quod dividit tempus prius a posteriori, faciat semper esse posterioris rei, idest quod in illo instanti hoc modo se habeat res sicut in tempore sequenti, sequitur quod idem sit ens et non ens simul, et sequitur quod quando aliquid factum est, sit non ens. Tunc enim factum est, quando generatio terminatur, scilicet in illo nunc quod dividit tempus prius et posterius: si ergo in toto tempore priori erat non ens, in hoc etiam nunc quando iam generatum est, est etiam non ens, quia istud nunc est finis prioris temporis.
Quomodo autem ista inconvenientia non sequantur ostendit, subdens quod unum et idem numero signum, scilicet nunc, est commune utrique tempori, scilicet priori et posteriori: sed quamvis sit unum subiecto, non tamen est unum ratione, sed duo; est enim finis prioris temporis et principium posterioris. Sed si accipiatur in ipso nunc quod res est, idest si accipiatur secundum quod est unum re, semper tenet se cum posteriori passione.
Vel aliter: quamvis ipsum nunc sit finis temporis prioris et principium posterioris, et sic sit communis utrique; tamen secundum quod est rei, idest secundum quod comparatur ad rem quae movetur, semper est posterioris passionis; quia res quae movetur, in illo instanti est subiecta passioni posterioris temporis.
Sic ergo obiectione et solutione posita, manifestat utrumque per exempla: et primo obiectionem, cum dicit: sit tempus etc..
Dicit ergo: sit tempus acb; res autem quae movetur sit d; quod quidem d in a tempore sit album, in b autem non album.
Videtur ergo sequi quod in c sit album et non album. Et quomodo hoc sequatur ostendit subdens: si enim in toto tempore a est album, sequitur quod in quolibet accepto in ipso a sit album; et similiter si in toto tempore b est non album, sequitur quod in quolibet ipsius accepto sit non album: cum ergo c sit acceptum in utroque, quia est huius finis et illius principium, videtur sequi quod in c sit album et non album.
Secundo ibi: non ergo dandum est etc., manifestat solutionem supra positam.
Et dicit quod non est concedendum quod in quolibet accepto in a sit album, sed est excipiendum ultimum nunc, quod est c, quod quidem iam est postremum, idest ultimus terminus mutationis: puta si album vel fiebat vel corrumpebatur in toto a, in c non corrumpitur nec fit album, sed iam factum est et corruptum. Quod autem factum est, est; quod autem corruptum est, non est. Unde manifestum est quod in c primo verum est dicere hoc esse album, si ibi terminetur generatio albi, aut esse non album, si ibi terminetur corruptio albi. Aut si hoc non dicatur, sequentur inconvenientia supra posita, scilicet quod cum aliquid est iam generatum, adhuc est non ens, et cum corruptum est, adhuc est ens. Aut etiam sequitur quod aliquid simul sit album et non album, et universaliter ens et non ens.
Deinde cum dicit: si autem quodcumque etc., infert quoddam corollarium ex praemissis, scilicet quod tempus non dividatur in indivisibilia tempora: quia hoc posito, non poterit solvi praemissa dubitatio.
Dicit ergo quod necesse est omne quod est prius non ens et postea ens, aliquando fieri ens: et iterum necesse est quod cum aliquid fit, non est. Si autem haec duo quae supponit, sunt vera, impossibile est quod tempus dividatur in indivisibilia tempora.
Dividatur enim tempus in indivisibilia tempora: et sit primum tempus indivisibile a; secundum autem, consequenter se habens ad ipsum, sit b. D autem, quod prius non erat album, et postmodum est album, fiebat album in a, et tunc non erat album: oportet autem dare quod sit factum in aliquo tempore indivisibili et habito, idest consequenter se habente, scilicet in b, in quo iam est. Si autem fiebat album in a, sequitur quod in a non erat album: in b autem est album. Cum ergo inter non esse et esse sit generatio media, quia nihil transit de non esse in esse nisi per generationem, sequitur quod inter a et b sit generatio media: ergo erit aliquod tempus medium inter a et b, in quo fiebat album (quia hoc ponitur tempus b, d generationis)p et similiter cum in illo medio tempore indivisibili fiat album, est non album: unde eadem ratione oportebit ponere aliud tempus adhuc medium, et sic in infinitum. Et hoc ideo, quia non potest poni quod in eodem tempore fiat et factum sit.
Sed non est eadem ratio si dicatur quod non sunt indivisibilia tempora in quae tempus dividitur. Dicemus enim secundum hoc, quod unum et idem tempus est in quo fiebat et factum est. Sed fiebat et erat non ens in toto tempore praecedenti: est autem factum et ens in ultimo nunc temporis; quod quidem non se habet ad tempus praecedens, sicut habitum aut consequenter, sed sicut terminus eius. Sed si ponantur tempora indivisibilia, necesse est quod consequenter se habeant.
Manifestum est autem secundum praemissa, quod non suppositis temporibus indivisibilibus, si aliquid fiat album in toto tempore a, non est maius tempus in quo factum est et fiebat, quam in quo fiebat solum. Quia in toto tempore fit, in ultimo autem termino temporis est factum: tempus autem et terminus temporis non sunt aliquid maius quam tempus tantum, sicut etiam punctum nihil magnitudinis adiicit lineae. Sed si ponantur tempora indivisibilia, manifestum est ex praemissis, quod oportet plus temporis esse in quo fit et factum est, quam in quo fit solum.
Ultimo autem epilogando concludit principale intentum, dicens quod praemissae rationes sunt, et similes eis, quibus credendum est tanquam propriis, quod motus reflexus non est continuus.