IN LIBROS PHYSICORUM

 LIBER 1

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 LIBER 2

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 LIBER 3

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 LIBER 4

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 Lectio 16

 Lectio 17

 Lectio 18

 Lectio 19

 Lectio 20

 Lectio 21

 Lectio 22

 Lectio 23

 LIBER 5

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 LIBER 6

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 LIBER 7

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 LIBER 8

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 Lectio 16

 Lectio 17

 Lectio 18

 Lectio 19

 Lectio 20

 Lectio 21

 Lectio 22

 Lectio 23

Lectio 21

Postquam philosophus ostendit qualis sit primus motus, hic ostendit quale sit primum movens.

Et dividitur in partes duas: primo dicit de quo est intentio; secundo exequitur propositum, ibi: horum autem unum quidem etc..

Dicit autem primo, quod cum dictum sit supra quod primum movens est immobile, nunc dicendum est quod primum movens est indivisibile et nullam habens magnitudinem, sicut omnino incorporeum.

Sed antequam hoc ostendamus, oportet praedeterminare quaedam quae exiguntur ad huius probationem.

Deinde cum dicit: horum autem unum quidem etc., exequitur propositum.

Et primo praemittit quaedam quae sunt necessaria ad principalis propositi ostensionem; secundo ostendit principale propositum, ibi: determinatis autem his etc..

Circa primum tria facit: primo ostendit quod ad motum infinitum requiritur potentia infinita; secundo quod potentia infinita non potest esse in magnitudine finita, ibi: quod autem omnino in finita magnitudine etc.; tertio quod primum motorem oportet esse unum, qui moveat motum continuum et sempiternum, ibi: de his autem quae feruntur etc..

Dicit ergo primo, quod inter ea quae praedeterminanda sunt ante principale propositum, unum est quod impossibile est aliquod finitum secundum potentiam, movere per tempus infinitum. Quod sic ostendit.

Tria sunt in quolibet motu: quorum unum est id quod movetur, aliud est ipsum movens, tertium autem est tempus in quo fit motus.

Oportet autem quod aut omnia ista sint infinita, aut omnia sint finita, aut quod quaedam sint finita et quaedam infinita, vel duo tantum vel unum.

Ponatur ergo primo quod a sit movens, et b sit mobile, et tempus infinitum sit c. Et ponatur quod aliqua pars ipsius a, quae est d, moveat aliquam partem b, quae est e.

His ergo positionibus factis, concludi potest quod d movet e in tempore non aequali ipsi c, in quo a movebat b, sed in tempore minori.

Probatum est enim in sexto quod totum mobile in maiori tempore pertransit aliquod signum, quam pars eius. Cum ergo tempus quod est c sit infinitum, relinquitur quod tempus in quo d movet e, non erit infinitum, sed finitum. Et sit illud tempus z; ut sicut a movet b in tempore c infinito, ita d moveat e in tempore z finito. Cum autem d sit pars ipsius a, si subtrahendo ab a addam ipsi d, totaliter ipsum a auferetur vel consumetur, cum sit finitum: omne enim finitum consumitur per subtractionem, si eadem quantitas semper sumatur, ut in tertio dictum est.

Et similiter consumetur ipsum b, si continue subtrahatur aliquid ab ipso et apponatur ipsi e; quia b etiam ponebatur esse finitum.

Sed quantumcumque auferam a tempore quod est c, etiam secundum eandem quantitatem auferendo, non consumetur totum c; quia ponitur esse infinitum.

Ex hoc concludit quod totum a movet totum b in tempore aliquo finito, quod est pars ipsius c. Quod quidem sic sequitur ex praemissis, quia secundum proportionem qua additur ad mobile et ad motorem, additur etiam ad tempus motus. Cum ergo subtrahendo a toto mobili et motore, et addendo ad partes ipsorum, consumatur quandoque totum mobile et totum movens, ita quod totum quod erat in toto addetur parti; sequetur quod proportionaliter addendo ad tempus, resultabit tempus finitum, in quo totum movens movebit totum mobile. Et sic oportet quod si movens est finitum et mobile finitum, quod tempus sit finitum.

Sic ergo non est possibile quod a finito movente moveatur aliquid motu infinito, scilicet secundum tempus infinitum. Et sic patet quod primo proponebatur, quod non contingit quod finitum movens moveat in tempore infinito.

Movet autem Avicenna dubitationem circa hanc Aristotelis demonstrationem.

Videtur enim non esse universalis: est enim aliquod finitum movens et mobile, a quo non potest aliquid subtrahi vel auferri, sicut est corpus caeleste; quod tamen in hac demonstratione non excipitur. Unde videtur quod vel demonstratio sit particularis, vel procedat ex falsa suppositione.

Huic autem obiectioni respondet Averroes in commento, quod quamvis a caelo nihil posset subtrahi, haec tamen conditionalis est vera: si a caelo aliqua pars auferatur, pars illa movebit aut movebitur in minori tempore quam totum. Nihil enim prohibet conditionalem esse veram, cuius antecedens est impossibile; sicut patet in hac conditionali: si homo volat, habet alas. Quidquid autem tollit veritatem conditionalis verae, est falsum, licet antecedens conditionalis sit falsum. Veritas autem praedictae conditionalis non potest stare cum hoc quod finitum moveat tempore infinito, ut patet per deductionem Aristotelis.

Sic igitur ex veritate praemissae conditionalis, concludit Aristoteles impossibile esse quod finitum moveat tempore infinito.

Potest autem brevius dici, quod Aristoteles quando in demonstrationibus suis utitur ablatione vel subtractione, non semper per ablationem intelligenda est solutio continuitatis, quam impossibile est esse in corpore caelesti; sed ablatio intelligi potest secundum quamcumque designationem. Sicut in ligno continuo manente possum designare vel tactu vel cogitatione aliquod punctum, quasi dividens totum; et per hunc modum auferre aliquam partem a toto, et dicere quod minor albedo est in parte quam in toto. Et per hunc etiam modum potest dici quod minor virtus est ad movendum in parte corporis caelestis per designationem ablata, quam in toto.

Alia autem dubitatio est difficilior.

Non enim videtur esse contra rationem moventis finiti, quod moveat tempore infinito: quia si illud finitum sit incorruptibile vel impassibile secundum suam naturam, et non recedens a sua natura, semper eodem modo se habet ad movendum; quia idem eodem modo se habens, semper facit idem.

Unde non est magis ratio quare non possit movere post, quam ante. Et hoc sensibiliter apparet: videmus enim quod sol potest in infinito tempore movere corpora inferiora.

Ad huius autem dubitationis solutionem, investigandus est processus demonstrationis inductae. Certum enim debet esse, quod sic intelligenda est conclusio, quemadmodum sequitur ex praemissis.

Considerandum est igitur quod tempus motus potest accipi dupliciter, praecipue in motu locali: uno modo secundum partes mobilis; alio modo secundum partes magnitudinis supra quam transit motus. Manifestum est enim quod prius una pars mobilis pertransit aliquod signum magnitudinis, quam totum mobile: similiter etiam totum mobile prius pertransit unam partem magnitudinis, quam totam.

Apparet autem manifeste ex processu Aristotelis, quod hic loquitur de tempore motus, secundum quod tempus motus accipitur secundum partes mobilis; et non secundum quod accipitur secundum partes magnitudinis.

Accipit enim in sua demonstratione, quod pars moventis moveat partem mobilis in minori tempore quam totum moveat totum: quod non esset verum si acciperemus tempus motus secundum partes magnitudinis quae motu pertransitur. Eadem enim est proportio partis motoris ad partes mobilis, quae est proportio totius motoris ad totum mobile.

Unde aequali velocitate semper pars movebit partem, qua totum movet totum: et sic in aequali tempore pertransibit pars mobilis aliquam magnitudinem, mota a parte motoris, et totum mobile motum a toto motore.

Vel forte in minori tempore movebitur totum quam pars: quia potentia unita maior est quam potentia divisa, et quanto maior est potentia moventis, velocior est motus, et tempus minus. Oportet ergo quod hoc intelligatur secundum quod accipitur tempus motus secundum partes mobilis: quia una pars mobilis in minori tempore pertransit aliquod signum, quam totum mobile. Et secundum hoc est impossibile quod tempore infinito moveatur, nisi sit mobile infinitum. Impossibile est autem quod mobile infinitum moveatur a motore finito: quia semper virtus motoris est maior quam virtus mobilis. Unde necesse est quod mobile infinitum moveatur a motore infinito. Et sic, sicut impossibile sequitur ex hoc quod ponitur quod motor finitus moveat mobile finitum, motu qui sit infinitus secundum partes mobilis; ita, remoto hoc inconvenienti, oportet ulterius hoc concludere, quod motus infinitus sit mobilis infiniti a motore infinito.

Sed contra hoc potest aliquis obiicere, quod Aristoteles supra non probavit motum esse infinitum secundum partes mobilis, sicut motus corporis infiniti dicitur infinitus: quia totum universum corporeum finitum est, ut probatum est in tertio huius, et probabitur in I de caelo. Unde non videtur esse demonstratio Aristotelis sic verificata ad propositum concludendum, ut scilicet primus motor qui movet motum infinitum, sit infinitus.

Sed dicendum quod id quod est prima causa motus infiniti, oportet quod sit per se causa infinitatis motus: quia semper causa quae est per se, est prior ea quae est per aliud, ut supra dictum est. Virtus autem causae per se determinatur ad effectum per se, et non ad effectum per accidens: sic enim supra in secundo docuit Aristoteles comparare causas effectibus. Cum autem contingat motum esse infinitum dupliciter, sicut dictum est, scilicet secundum partes mobilis, et secundum partes longitudinis supra quam transit motus; per se infinitum est in motu ex partibus mobilis, per accidens autem secundum partes longitudinis: quia quantitas motus quae attenditur secundum partes mobilis, competit ei secundum proprium subiectum, et ita inest ei per se, quantitas autem motus quae accipitur secundum partes longitudinis, accipitur secundum reiterationem motus ipsius mobilis, prout scilicet mobile totum, quod complevit motum suum super unam partem longitudinis, iterato pertransit aliam. Illud ergo quod est prima causa infinitatis motus, habet virtutem super infinitatem motus quae est per se, ut scilicet possit movere mobile infinitum si contingat: et ideo necesse est quod sit infinitum. Et quamvis primum mobile sit finitum, tamen habet quandam similitudinem cum infinito, ut dictum est in tertio.

Ad hoc autem quod aliquid sit causa motus infiniti per reiterationem motus (quod est per accidens), non oportet quod habeat virtutem infinitam, sed sufficit si habet virtutem immobilem finitam: quia semper manente eadem virtute, poterit reiterare eundem effectum; sicut sol habet virtutem finitam, et tamen posset movere inferiora elementa tempore infinito, si motus esset sempiternus, secundum positionem Aristotelis. Non enim est prima causa infinitatis motus, sed quasi ab alio mota ad movendum tempore infinito, secundum positionem praedictam.

Deinde cum dicit: quod autem omnino in finita etc., ostendit quod necesse est virtutem quae est in magnitudine, proportionari magnitudini in qua est.

Et primo ostendit quod in magnitudine finita non potest esse potentia infinita, quod principalius intendit; secundo quod nec in magnitudine infinita potest esse potentia finita, ibi: nullum igitur finitum etc..

Quod autem in magnitudine finita non contingat esse potentiam infinitam, probat, duas suppositiones praemittendo.

Quarum prima est, quod maior potentia aequalem effectum perficit in minore tempore quam minor: sicut maior potentia calefactiva ad aequalem caliditatem perducit id in quo agit, in minori tempore; et simile est de potentia dulcorantis vel proiicientis, vel cuiuscumque moventis.

Et ex hac suppositione concludit, quod cum potentia infinita sit maior quam potentia finita, necesse est quod si sit aliqua magnitudo finita habens potentiam infinitam, quod a tali agente sive unum patiens sive plura patiantur in eodem tempore maiorem mutationem, quam ab alio habente potentiam finitam: vel e converso quod aequalem mutationem patiens, ab eo patiatur in minori tempore. Utrumque enim potest intelligi in eo quod dicit et plus quam ab alio.

Secunda suppositio est, quod cum omne quod movetur moveatur in tempore, ut in sexto probatum est, non potest esse quod patiens immutetur ab agente infinitae potentiae in non tempore. Immutatur ergo in tempore.

Ex hoc sic procedit. Sit tempus in quo virtus infinita movet calefaciendo vel impellendo, a; tempus autem in quo aliqua virtus finita movet, sit ab, quod est maius quam a. Qualibet autem potentia finita potest accipi alia maior. Si ergo accipiamus aliam maiorem potentiam finitam quam primam, quae movebat in tempore ab, sequetur quod haec secunda potentia movebit in tempore minori; et iterum tertia potentia finita maior in tempore adhuc minori. Et sic semper accipiendo finitam potentiam, veniam aliquando ad hoc quod aliqua potentia finita moveat in tempore a: cum enim semper fiat additio ad potentiam finitam, excedetur omnis determinata proportio.

Simul autem additur ad potentiam motivam et subtrahitur a tempore motus; quia maior potentia in minori tempore movere potest.

Sic ergo sequetur quod finita potentia perficiat motum in aequali tempore cum potentia infinita, quae ponebatur movere in a. Hoc autem est impossibile: ergo nulla magnitudo finita habet potentiam infinitam.

Dubitatur autem circa hanc rationem multipliciter.

Primo namque videtur quod haec ratio nullo modo concludat. Quod enim per se convenit alicui, per nullam potentiam potest ab eo removeri, quantumcumque sit magna: non enim est ex defectu potentiae, vel infinitati potentiae repugnat, si dicatur fieri non posse quod homo non sit animal. Esse autem in tempore per se convenit motui: ponitur enim motus in definitione temporis, ut supra in quarto habitum est. Ergo si ponatur etiam potentia infinita movens, non sequitur quod motus sit in non tempore, ut Aristoteles hic concludit.

Item si consideretur processus philosophi, ex hoc concludit quod motus sit in non tempore, quia potentia movens est infinita; sed potentia infinita movens potest etiam non esse in corpore; ergo eadem ratione sequitur quod talis potentia, si sit infinita, movebit in non tempore. Non ergo per hoc quod est impossibile moveri in non tempore, potest concludi quod nulla virtus infinita est in magnitudine, sed quod simpliciter nulla virtus movens sit infinita.

Item, ad magnitudinem potentiae duo pertinere videntur, scilicet velocitas motus et diuturnitas ipsius; et secundum excessum potentiae videmus fieri excessum in utroque dictorum. Sed secundum excessum potentiae infinitae, supra ostendit quod motus perpetuus est ab aliqua potentia infinita, non autem quod aliqua potentia infinita non sit in magnitudine. Ergo similiter et hic, secundum excessum in velocitate non debet concludere quod nulla virtus infinita sit in magnitudine, sed quod virtus quae movet tempore infinito, propter sui infinitatem moveat etiam in non tempore.

Item videtur conclusio esse falsa. Quanto enim est maior virtus alicuius corporis, tanto diutius potest conservari in esse: si ergo nullius corporis potentia esset infinita, nullum corpus posset in infinitum durare. Quod patet esse falsum tam secundum opinionem ipsius, quam secundum sententiam fidei christianae, quae ponit substantiam mundi in infinitum duraturam.

Posset etiam moveri obiectio de divisione et additione quibus utitur, quae non conveniunt rerum naturae; sed quia de hoc superius satis dictum est, praetermittatur ad praesens.

His ergo dubitationibus per ordinem respondentes, dicendum est ad primam, quod philosophus non intendit hic facere demonstrationem ostensivam, sed demonstrationem ad impossibile ducentem; in qua, quia ex aliquo dato aliquid sequitur quod est impossibile, concluditur primum datum impossibile esse. Non autem est verum quod primum datum simul cum conclusione esse sit possibile; sicut si daretur quod esset aliqua potentia quae posset removere genus a specie, sequeretur quod illa potentia posset facere quod homo non esset animal: sed quia hoc est impossibile, impossibile est et primum; non autem ex hoc potest concludi esse possibile, quod sit aliqua potentia quae faciat hominem non esse animal. Ita ex hoc quod est aliquam potentiam infinitam esse in magnitudine, ex necessitate sequitur motum esse in non tempore: sed quia hoc est impossibile, impossibile est infinitam potentiam esse in magnitudine; nec potest ex hoc concludi esse possibile quod potentia infinita moveat in non tempore.

Ad secundam autem dubitationem respondet Averroes in commento huius loci, dicens quod ratio Aristotelis hic procedit de potentia, ratione suae infinitatis. Finitum autem et infinitum convenit quantitati, ut supra in primo habitum est: unde potentiae quae non est in magnitudine, non proprie competit quod sit finita vel infinita.

Sed haec responsio est et contra intentionem Aristotelis, et contra veritatem.

Contra intentionem quidem Aristotelis est, quia Aristoteles in praecedenti demonstratione probavit quod potentia movens tempore infinito sit infinita: et ex hoc infra concludit quod potentia movens caelum non est potentia in magnitudine.

Est etiam contra veritatem: quia cum omnis potentia activa sit secundum aliquam formam, eo modo convenit magnitudo potentiae, et per consequens finitum et infinitum, sicut convenit formae. Formae autem convenit magnitudo et per se, et per accidens: per se quidem, secundum perfectionem ipsius formae, sicut dicitur magna albedo etiam parvae nivis, secundum perfectionem propriae rationis; per accidens autem secundum quod aliqua forma habet extensionem in subiecto, sicut dicitur magna albedo propter magnitudinem superficiei.

Haec autem secunda magnitudo non potest competere potentiae quae non est in magnitudine: sed prima magnitudo maxime ei competit, quia potentiae immateriales, quanto sunt minus contractae per applicationem ad materiam, tanto sunt perfectiores et universaliores.

Velocitas autem motus non consequitur magnitudinem virtutis quae est per accidens, per extensionem ad magnitudinem subiecti, sed magis eam quae est per se, secundum propriam perfectionem: quia quanto aliquod ens actu est perfectius, tanto est vehementius activum.

Unde non potest dici quod potentia quae non est in magnitudine, quia non est infinita infinitate magnitudinis quae est ex magnitudine subiecti, propter hoc non causet augmentum velocitatis in infinitum, quod est movere in non tempore.

Unde et idem Commentator hanc dubitationem aliter solvit in XI metaphys., ubi dicit quod corpus caeleste movetur a duplici motore, scilicet a motore coniuncto, qui est anima caeli, et a motore separato, qui non movetur neque per se neque per accidens. Et quia ille motor separatus est infinitae virtutis, motus caeli acquirit ab eo perpetuam durationem: quia vero motor coniunctus est finitae virtutis, ideo motus caeli acquirit ab eo velocitatem determinatam.

Sed nec ista responsio sufficiens est. Cum enim utrumque videatur consequi potentiam infinitam, scilicet quod moveat tempore infinito, ut praecedens demonstratio conclusit, et quod moveat in non tempore, ut videtur concludere haec demonstratio: iterum restat dubitatio quare anima caeli, quae movet in virtute motoris separati infiniti, magis ab eo sortiatur ut possit movere tempore infinito, quam ut moveat velocitate infinita, idest in non tempore.

Ad hanc igitur dubitationem dicendum est, quod omnis potentia quae non est in magnitudine, movet per intellectum: sic enim philosophus probat caelum moveri a suo motore, in XI metaphys.. Nulla autem potentia quae est in magnitudine, movet quasi intelligens: probatum est enim in III de anima, quod intellectus non est virtus alicuius corporis.

Haec autem est differentia inter agens per intellectum et agens materiale, quia actio agentis materialis proportionatur naturae agentis; tanta enim procedit calefactio quantus est calor: sed actio agentis per intellectum, non proportionatur naturae ipsius, sed formae apprehensae; non enim aedificator tantum aedificat quantum potest, sed quantum exigit ratio formae conceptae.

Sic igitur si aliqua esset virtus infinita in magnitudine, sequeretur quod motus ab ipsa procedens esset secundum proportionem eius: et ita procedit demonstratio praesens. Si autem sit virtus infinita non in magnitudine, motus ab ipsa non procedit secundum proportionem virtutis, sed secundum rationem formae apprehensae, idest secundum quod convenit fini et naturae subiecti.

Est etiam aliud attendendum, quod sicut probatum est in sexto huius, nihil movetur nisi magnitudinem habens: unde velocitas motus est effectus receptus a movente in aliquo habente magnitudinem. Manifestum est autem, quod nihil habens magnitudinem potest recipere effectum aequalem proportionaliter potentiae quae non est in magnitudine; quia omnis natura corporea comparatur ad naturam incorpoream sicut quoddam particulare ad absolutum et universale. Unde non potest concludi, si virtus infinita non sit in magnitudine, quod ex ea consequatur in aliquo corpore infinita velocitas, quae est effectus proportionatus tali potentiae, ut dictum est.

Sed nihil prohibet in aliqua magnitudine recipi effectum virtutis quae est in magnitudine, quia causa proportionatur effectui. Unde si poneretur quod aliqua virtus infinita esset in magnitudine, sequeretur quod effectus correspondens esset in magnitudine, scilicet velocitas infinita. Et hoc est impossibile: ergo et primum.

Ex his autem patet solutio tertiae dubitationis. Nam moveri tempore infinito non repugnat rationi magnitudinis motae: convenit enim magnitudini circulari, ut supra ostensum est. Sed moveri velocitate infinita, idest in non tempore, contrariatur rationi magnitudinis, ut in sexto probatum est. Unde a primo movente infinitae virtutis, secundum Aristotelem, causatur motus diuturnitatis infinitae; non autem motus velocitatis infinitae.

Ad quartam vero dubitationem, solvit Alexander, ut Averroes dicit hic in commento, quod corpus caeleste acquirit aeternitatem a motore separato, quod est infinitae virtutis, sicut et perpetuitatem motus.

Unde sicut non est ex infinitate caelestis corporis quod in perpetuum moveatur, ita non est ex infinitate corporis caelestis quod in perpetuum duret; sed utrumque est ex infinitate motoris separati.

Hanc autem responsionem Averroes improbare nititur et hic in commento, et in XI metaphys., dicens quod impossibile est quod aliquid acquirat perpetuitatem essendi ab alio; quia sequeretur quod id quod in se est corruptibile, fieret aeternum. Sed perpetuitatem motus potest aliquid acquirere ab altero: eo quod motus est actus mobilis a movente. Dicit ergo quod in corpore caelesti, quantum est de se, non est aliqua potentia ad non esse, quia eius substantiae non est aliquid contrarium: sed in ipso est aliqua potentia ad quietem, quia motui eius contrariatur quies. Et inde est quod non indiget acquirere perpetuitatem essendi ab alio: sed perpetuitatem motus ab alio acquirere indiget.

Quod autem in corpore caelesti non sit aliqua potentia ad non esse, ex hoc contingere dicit, quod corpus caeleste dicit non esse compositum ex materia et forma quasi ex potentia et actu; sed dicit ipsum esse materiam actu existentem, et formam eius dicit animam ipsius; ita tamen quod non constituatur in esse per formam, sed solum in moveri. Et sic dicit in eo esse, non potentiam ad esse, sed solum ad ubi, sicut philosophus dicit in XI metaphys..

Sed haec solutio et veritati repugnat, et intentioni Aristotelis.

Veritati quidem repugnat multipliciter: et primo quia dicit quod corpus caeleste non componitur ex materia et forma: hoc enim est omnino impossibile.

Manifestum est enim corpus caeleste esse aliquid actu; alioquin non moveretur: quod enim est in potentia tantum, non est subiectum motus, ut in sexto habitum est.

Oportet autem omne quod est actu, vel esse formam subsistentem, sicut substantiae separatae; vel habere formam in alio, quod quidem se habet ad formam sicut materia, et sicut potentia ad actum.

Non autem potest dici quod corpus caeleste sit forma subsistens: quia sic esset intellectum in actu, non cadens sub sensu neque sub quantitate. Relinquitur ergo quod est compositum ex materia et forma, et ex potentia et actu; et sic est in ipso quodammodo potentia ad non esse.

Sed dato quod corpus caeleste non sit compositum ex materia et forma, adhuc oportet in ipso ponere aliquo modo potentiam essendi.

Necesse est enim quod omnis substantia simplex subsistens, vel ipsa sit suum esse, vel participet esse. Substantia autem simplex quae est ipsum esse subsistens, non potest esse nisi una, sicut nec albedo, si esset subsistens, posset esse nisi una. Omnis ergo substantia quae est post primam substantiam simplicem, participat esse. Omne autem participans componitur ex participante et participato, et participans est in potentia ad participatum.

In omni ergo substantia quantumcumque simplici, post primam substantiam simplicem, est potentia essendi.

Deceptus autem fuit per aequivocationem potentiae. Nam potentia quandoque dicitur quod se habet ad opposita. Et hoc excluditur a corpore caelesti, et a substantiis simplicibus separatis: quia non est in eis potentia ad non esse, secundum intentionem Aristotelis; eo quod substantiae simplices sunt formae tantum, formae autem per se convenit esse; materia autem corporis caelestis non est in potentia ad aliam formam. Sicut enim corpus caeleste comparatur ad suam figuram, cuius est subiectum, ut potentia ad actum, et tamen non potest non habere talem figuram: ita materia corporis caelestis comparatur ad talem formam ut potentia ad actum, et tamen non est in potentia ad privationem huius formae, vel ad non esse. Non enim omnis potentia est oppositorum: alioquin possibile non sequeretur ad necesse, sicut dicitur in II perihermeneias.

Est etiam eius positio contra intentionem Aristotelis, qui in I de caelo in quadam demonstratione utitur quod corpus caeleste habeat potentiam vel virtutem ad hoc quod sit semper. Non potest ergo evadere inconveniens per hoc quod dicit quod in corpore caelesti non est potentia essendi: hoc enim est manifeste falsum, et contra intentionem Aristotelis.

Videamus ergo utrum convenienter impugnet solutionem Alexandri, qui dicit quod corpus caeleste acquirit aeternitatem ab alio.

Esset siquidem conveniens eius improbatio, si Alexander posuisset quod corpus caeleste de se haberet potentiam ad esse et non esse, et acquireret ab alio esse semper. Et hoc dico supposita intentione ipsius, ut non excludamus omnipotentiam dei, per quam corruptibile hoc potest induere incorruptionem: quod nunc discutere ad propositum non pertinet.

Sed tamen Averroes, etiam sua intentione supposita, non potest concludere contra Alexandrum, qui non posuit quod corpus caeleste acquirat aeternitatem ab alio, quasi de se habens potentiam ad esse et non esse, sed quasi non habens a se esse. Omne enim quod non est suum esse, participat esse a causa prima, quae est suum esse. Unde et ipsemet confitetur in libro de substantia orbis, quod deus est causa caeli non solum quantum ad motum eius, sed etiam quantum ad substantiam ipsius: quod non est nisi quia ab eo habet esse. Non autem habet ab eo esse nisi perpetuum: habet ergo perpetuitatem ab alio.

Et in hoc etiam consonant dicta Aristotelis, qui dicit in V metaphys., et supra in principio huius octavi, quod quaedam sunt necessaria quae habent causam suae necessitatis.

Hoc ergo supposito, plana est solutio secundum intentionem Alexandri, quod sicut corpus caeleste habet moveri ab alio, ita et esse. Unde sicut motus perpetuus demonstrat infinitam virtutem motoris, non autem ipsius mobilis; ita et perpetua eius duratio demonstrat infinitam virtutem causae a qua habet esse.

Non tamen omnino eodem modo se habet potentia corporis caelestis ad esse et ad moveri perpetuo.

Non quidem secundum differentiam quam ipse assignat, quod in corpore caelesti sit quantum ad moveri potentia ad opposita, quae sunt quies et motus: sed ad opposita quae sunt diversa ubi.

Sed differunt quantum ad aliud. Nam motus secundum se cadit in tempore: esse vero non cadit secundum se in tempore, sed solum secundum quod subiacet motui. Si ergo sit aliquod esse quod non subiacet motui, illud esse nullo modo cadit sub tempore. Potentia ergo quae est ad moveri in tempore infinito, respicit infinitatem temporis directe et per se.

Sed potentia quae est ad esse tempore infinito, si quidem illud esse sit transmutabile, respicit quantitatem temporis: et ideo maior virtus vel potentia requiritur ad hoc quod aliquid duret in esse transmutabili maiori tempore. Sed potentia quae est respectu esse intransmutabilis, nullo modo respicit quantitatem temporis. Unde magnitudo vel infinitas temporis nihil facit ad magnitudinem vel infinitatem potentiae respectu talis esse. Dato ergo per impossibile quod corpus caeleste non haberet esse ab alio, adhuc non posset ex perpetuitate ipsius concludi, quod in eo esset virtus infinita.

Deinde cum dicit: nullum itaque finitum etc., probat quod in magnitudine infinita non potest esse potentia finita.

Et hoc duabus rationibus: circa quarum primam tria facit.

Primo ponit conclusionem intentam, dicens quod sicut in magnitudine finita non potest esse potentia infinita, ita nec in aliquo quanto infinito potest esse potentia finita secundum totum (nam pars infiniti si accipiatur finita, habebit potentiam finitam)p hoc autem inducit non quasi necessarium ad principale propositum ostendendum, sed quasi cohaerens et affine conclusioni prius demonstratae.

Secundo ibi: et tamen contingit etc., ponit quoddam per quod alicui videri posset quod in magnitudine infinita sit potentia finita: videmus enim quod aliqua minor magnitudo habet maiorem virtutem quam maior magnitudo, sicut parvus ignis habet maiorem virtutem activam quam multus aer. Sed per hoc non potest haberi quod quantum infinitum habeat potentiam finitam: quia si accipiatur aliqua adhuc magis excedens magnitudo, habebit maiorem virtutem; sicut si aer maior secundum aliquam quantitatem habet minus de virtute quam parvus ignis, si multum augeatur aeris quantitas, habebit maiorem virtutem quam parvus ignis.

Tertio ibi: sit igitur in quo est ab etc., ponit demonstrationem intentam: quae talis est. Sit quantum infinitum ab; et sit bc magnitudo finita alterius generis, quae habet quandam potentiam finitam; et sit quoddam mobile d, quod moveatur a magnitudine bc, in tempore quod est Ez. Et quia bc est magnitudo finita, poterit accipi maior magnitudo: accipiatur ergo maior secundum duplam proportionem. Quanto autem est maior potentia moventis, tanto in minori tempore movet, ut habitum est in septimo: ergo duplum ipsius bc movebit idem mobile, scilicet d, in medio tempore, quod sit zt, ita quod intelligatur tempus ez dividi per medium in puncto t. Semper autem sic addendo ad bc, minuetur tempus motus: sed quantumcumque addatur ad bc, nunquam potest transire ab, quod improportionaliter excedit bc, sicut infinitum finitum.

Et cum ab habeat potentiam finitam, movet in tempore finito d: et sic semper diminuendo de tempore quo movebat bc, perveniemus ad aliquod tempus minus quam sit tempus in quo movebat ab, quia omne finitum transcenditur per divisionem. Sequetur ergo quod minor potentia moveat in minori tempore; quod est impossibile. Relinquitur ergo quod in magnitudine infinita erat potentia infinita, quia scilicet potentia magnitudinis infinitae excedit omnem potentiam finitam.

Et hoc probatum est per subtractionem temporis: quia omnis potentiae finitae necesse est ponere quoddam determinatum tempus in quo movet. Quod ex hoc apparet: quia si tanta potentia movet in tanto tempore, maior movebit in minori tempore, sed tamen determinato, idest finito, secundum conversam proportionem; ut scilicet quantum additur ad potentiam, tantum diminuatur de tempore. Et sic quantumcumque addas ad potentiam finitam, dummodo remaneat potentia finita, semper habebit tempus finitum: quia erit accipere aliquod tempus quod erit tanto minus tempore prius dato, quanto potentia superexcrescens ex additione, est maior potentia prius data.

Sed potentia infinita excellit in movendo omne determinatum tempus, sicut in omnibus aliis infinitis contingit: quia omne infinitum, sicut multitudo et magnitudo, excedit omne determinatum sui generis. Et sic manifestum est quod potentia infinita excedit omnem potentiam finitam, ex quo excessus potentiae super potentiam est sicut minoratio temporis a tempore, ut dictum est. Unde patet quod conclusio praedicta, scilicet quod magnitudinis infinitae sit potentia infinita, ex necessitate sequitur ex praemissis.

Deinde cum dicit: est autem hoc demonstrare etc., ponit ad idem aliam demonstrationem, quae non differt a prima nisi in hoc, quod prima concludebat accipiendo potentiam finitam existentem in magnitudine finita alterius generis, haec autem secunda demonstratio procedit accipiendo quandam aliam potentiam finitam, existentem in alia magnitudine finita eiusdem generis, cuius est magnitudo infinita: puta si sit aer magnitudinis infinitae, habens potentiam finitam, accipiemus quandam potentiam finitam existentem in aliqua magnitudine finita alterius aeris.

Hac positione facta, manifestum est quod potentia finita magnitudinis finitae aliquoties multiplicata, mensurabit potentiam finitam, quae est in magnitudine infinita; quia omne finitum mensuratur ab aliquo finito minori aliquoties sumpto, vel etiam exceditur. Cum ergo in magnitudine eiusdem generis oporteat quod maior magnitudo habeat maiorem potentiam, sicut maior aer habet maiorem potentiam quam minor; necesse erit quod illa magnitudo finita quae habebit eandem proportionem ad magnitudinem finitam prius acceptam, quam habet potentia finita infinitae magnitudinis ad potentiam magnitudinis finitae prius acceptae, habeat aequalem potentiam potentiae magnitudinis infinitae. Sicut si potentia finita magnitudinis infinitae erit centupla potentiae finitae cuiusdam magnitudinis finitae datae, oportebit quod magnitudo quae est centupla illius magnitudinis finitae, habeat aequalem potentiam magnitudini infinitae; ex quo proportionaliter in re eiusdem generis augetur magnitudo et potentia. Hoc autem est impossibile quod conclusum est; quia oporteret quod vel magnitudo finita esset aequalis infinitae, vel quod minor magnitudo eiusdem generis habeat aequalem potentiam maiori. Est ergo impossibile et primum ex quo sequitur, scilicet quod magnitudo infinita habeat potentiam finitam.

Sic ergo epilogando concludit duas conclusiones demonstrativas, scilicet quod in magnitudine finita non possit esse potentia infinita, et quod in magnitudine infinita non possit esse potentia finita.