Book I
Book II
Book III
Book IV
The sun both checks the formation of winds and stimulates it. When the evaporation is small in amount and faint the sun wastes it and dissipates by its greater heat the lesser heat contained in the evaporation. It also dries up the earth, the source of the evaporation, before the latter has appeared in bulk: just as, when you throw a little fuel into a great fire, it is often burnt up before giving off any smoke. In these ways the sun checks winds and prevents them from rising at all: it checks them by wasting the evaporation, and prevents their rising by drying up the earth quickly. Hence calm is very apt to prevail about the rising of Orion and lasts until the coming of the Etesiae and their 'forerunners'.
Calm is due to two causes. Either cold quenches the evaporation, for instance a sharp frost: or excessive heat wastes it. In the intermediate periods, too, the causes are generally either that the evaporation has not had time to develop or that it has passed away and there is none as yet to replace it.
Both the setting and the rising of Orion are considered to be treacherous and stormy, because they place at a change of season (namely of summer or winter; and because the size of the constellation makes its rise last over many days) and a state of change is always indefinite and therefore liable to disturbance.
The Etesiae blow after the summer solstice and the rising of the dog-star: not at the time when the sun is closest nor when it is distant; and they blow by day and cease at night. The reason is that when the sun is near it dries up the earth before evaporation has taken place, but when it has receded a little its heat and the evaporation are present in the right proportion; so the ice melts and the earth, dried by its own heat and that of the sun, smokes and vapours. They abate at night because the cold pf the nights checks the melting of the ice. What is frozen gives off no evaporation, nor does that which contains no dryness at all: it is only where something dry contains moisture that it gives off evaporation under the influence of heat.
The question is sometimes asked: why do the north winds which we call the Etesiae blow continuously after the summer solstice, when there are no corresponding south winds after the winter solstice? The facts are reasonable enough: for the so-called 'white south winds' do blow at the corresponding season, though they are not equally continuous and so escape observation and give rise to this inquiry. The reason for this is that the north wind I from the arctic regions which are full of water and snow. The sun thaws them and so the Etesiae blow: after rather than at the summer solstice. (For the greatest heat is developed not when the sun is nearest to the north, but when its heat has been felt for a considerable period and it has not yet receded far. The 'bird winds' blow in the same way after the winter solstice. They, too, are weak Etesiae, but they blow less and later than the Etesiae. They begin to blow only on the seventieth day because the sun is distant and therefore weaker. They do not blow so continuously because only things on the surface of the earth and offering little resistance evaporate then, the thoroughly frozen parts requiring greater heat to melt them. So they blow intermittently till the true Etesiae come on again at the summer solstice: for from that time onwards the wind tends to blow continuously.) But the south wind blows from the tropic of Cancer and not from the antarctic region.
There are two inhabitable sections of the earth: one near our upper, or nothern pole, the other near the other or southern pole; and their shape is like that of a tambourine. If you draw lines from the centre of the earth they cut out a drum-shaped figure. The lines form two cones; the base of the one is the tropic, of the other the ever visible circle, their vertex is at the centre of the earth. Two other cones towards the south pole give corresponding segments of the earth. These sections alone are habitable. Beyond the tropics no one can live: for there the shade would not fall to the north, whereas the earth is known to be uninhabitable before the sun is in the zenith or the shade is thrown to the south: and the regions below the Bear are uninhabitable because of the cold.
(The Crown, too, moves over this region: for it is in the zenith when it is on our meridian.)
So we see that the way in which they now describe the geography of the earth is ridiculous. They depict the inhabited earth as round, but both ascertained facts and general considerations show this to be impossible. If we reflect we see that the inhabited region is limited in breadth, while the climate admits of its extending all round the earth. For we meet with no excessive heat or cold in the direction of its length but only in that of its breadth; so that there is nothing to prevent our travelling round the earth unless the extent of the sea presents an obstacle anywhere. The records of journeys by sea and land bear this out. They make the length far greater than the breadth. If we compute these voyages and journeys the distance from the Pillars of Heracles to India exceeds that from Aethiopia to Maeotis and the northernmost Scythians by a ratio of more than 5 to 3, as far as such matters admit of accurate statement. Yet we know the whole breadth of the region we dwell in up to the uninhabited parts: in one direction no one lives because of the cold, in the other because of the heat.
But it is the sea which divides as it seems the parts beyond India from those beyond the Pillars of Heracles and prevents the earth from being inhabited all round.
Now since there must be a region bearing the same relation to the southern pole as the place we live in bears to our pole, it will clearly correspond in the ordering of its winds as well as in other things. So just as we have a north wind here, they must have a corresponding wind from the antarctic. This wind cannot reach us since our own north wind is like a land breeze and does not even reach the limits of the region we live in. The prevalence of north winds here is due to our lying near the north. Yet even here they give out and fail to penetrate far: in the southern sea beyond Libya east and west winds are always blowing alternately, like north and south winds with us. So it is clear that the south wind is not the wind that blows from the south pole. It is neither that nor the wind from the winter tropic. For symmetry would require another wind blowing from the summer tropic, which there is not, since we know that only one wind blows from that quarter. So the south wind clearly blows from the torrid region. Now the sun is so near to that region that it has no water, or snow which might melt and cause Etesiae. But because that place is far more extensive and open the south wind is greater and stronger and warmer than the north and penetrates farther to the north than the north wind does to the south.
The origin of these winds and their relation to one another has now been explained.