Meteorology

 Table of Contents

 Book I

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 Book II

 1

 2

 3

 4

 5

 6

 7

 8

 9

 Book III

 1

 2

 3

 4

 5

 6

 Book IV

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

7

If a body contains more water than earth fire only thickens it: if it contains more earth fire solidifies it. Hence natron and salt and stone and potter's clay must contain more earth.

The nature of oil presents the greatest problem. If water preponderated in it, cold ought to solidify it; if earth preponderated, then fire ought to do so. Actually neither solidifies, but both thicken it. The reason is that it is full of air (hence it floats on the top of water, since air tends to rise). Cold thickens it by turning the air in it into water, for any mixture of oil and water is thicker than either. Fire and the lapse of time thicken and whiten it. The whitening follows on the evaporation of any water that may have been in it; the is due to the change of the air into water as the heat in the oil is dissipated. The effect in both cases is the same and the cause is the same, but the manner of its operation is different. Both heat and cold thicken it, but neither dries it (neither the sun nor cold dries oil), not only because it is glutinous but because it contains air. Its glutinous nature prevents it from giving off vapour and so fire does not dry it or boil it off.

Those bodies which are made up of earth and water may be classified according to the preponderance of either. There is a kind of wine, for instance, which both solidifies and thickens by boiling-I mean, must. All bodies of this kind lose their water as they That it is their water may be seen from the fact that the vapour from them condenses into water when collected. So wherever some sediment is left this is of the nature of earth. Some of these bodies, as we have said, are also thickened and dried by cold. For cold not only solidifies but also dries water, and thickens things by turning air into water. (Solidifying, as we have said, is a form of drying.) Now those things that are not thickened by cold, but solidified, belong rather to water, e.g.. wine, urine, vinegar, lye, whey. But those things that are thickened (not by evaporation due to fire) are made up either of earth or of water and air: honey of earth, while oil contains air. Milk and blood, too, are made up of both water and earth, though earth generally predominates in them. So, too, are the liquids out of which natron and salt are formed; and stones are also formed from some mixtures of this kind. Hence, if the whey has not been separated, it burns away if you boil it over a fire. But the earthy element in milk can also be coagulated by the help of fig-juice, if you boil it in a certain way as doctors do when they treat it with fig-juice, and this is how the whey and the cheese are commonly separated. Whey, once separated, does not thicken, as the milk did, but boils away like water. Sometimes, however, there is little or no cheese in milk, and such milk is not nutritive and is more like water. The case of blood is similar: cold dries and so solidifies it. Those kinds of blood that do not solidify, like that of the stag, belong rather to water and are very cold. Hence they contain no fibres: for the fibres are of earth and solid, and blood from which they have been removed does not solidify. This is because it cannot dry; for what remains is water, just as what remains of milk when cheese has been removed is water. The fact that diseased blood will not solidify is evidence of the same thing, for such blood is of the nature of serum and that is phlegm and water, the nature of the animal having failed to get the better of it and digest it.

Some of these bodies are soluble, e.g. natron, some insoluble, e.g. pottery: of the latter, some, like horn, can be softened by heat, others, like pottery and stone, cannot. The reason is that opposite causes have opposite effects: consequently, if solidification is due to two causes, the cold and the dry, solution must be due to the hot and the moist, that is, to fire and to water (these being opposites): water dissolving what was solidified by fire alone, fire what was solidified by cold alone. Consequently, if any things happen to be solidified by the action of both, these are least apt to be soluble. Such a case we find where things have been heated and are then solidified by cold. When the heat in leaving them has caused most of the moisture to evaporate, the cold so compacts these bodies together again as to leave no entrance even for moisture. Therefore heat does not dissolve them (for it only dissolves those bodies that are solidified by cold alone), nor does water (for it does not dissolve what cold solidifies, but only what is solidified by dry heat). But iron is melted by heat and solidified by cold. Wood consists of earth and air and is therefore combustible but cannot be melted or softened by heat. (For the same reason it floats in water-all except ebony. This does not, for other kinds of wood contain a preponderance of air, but in black ebony the air has escaped and so earth preponderates in it.) Pottery consists of earth alone because it solidified gradually in the process of drying. Water cannot get into it, for the pores were only large enough to admit of vapour escaping: and seeing that fire solidified it, that cannot dissolve it either.

So solidification and melting, their causes, and the kinds of subjects in which they occur have been described.