IN LIBROS POSTER. ANALYT.

 LIBER 1

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 Lectio 16

 Lectio 17

 Lectio 18

 Lectio 19

 Lectio 20

 Lectio 21

 Lectio 22

 Lectio 23

 Lectio 24

 Lectio 25

 Lectio 26

 Lectio 27

 Lectio 28

 Lectio 29

 Lectio 30

 Lectio 31

 Lectio 32

 Lectio 33

 Lectio 34

 Lectio 35

 Lectio 36

 Lectio 37

 Lectio 38

 Lectio 39

 Lectio 40

 Lectio 41

 Lectio 42

 Lectio 43

 Lectio 44

 LIBER 2

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 Lectio 16

 Lectio 17

 Lectio 18

 Lectio 19

 Lectio 20

Lectio 9

Postquam philosophus ostendit quid sit syllogismus demonstrativus, in parte ista incipit ostendere ex quibus et qualibus sit. Et circa hoc tria facit; primo, continuat se ad praecedentia; secundo, interponit quaedam quae sunt necessaria ad praecognoscendum; ibi: primum autem determinabimus etc.; tertio, determinat propositum, scilicet ex quibus sit syllogismus demonstrativus; ibi: si igitur est demonstrativa etc..

Dicit ergo primo, quod quia dictum est supra, quod impossibile est aliter se habere in definitione eius quod est scire, necessarium erit id quod scitur secundum demonstrationem. Quid autem sit quod est secundum demonstrationem scire exponit, dicens quod demonstrativa scientia est quam habemus in habendo demonstrationem, idest quam ex demonstratione acquirimus.

Et sic habetur quod demonstrationis conclusio sit necessaria. Quamvis autem necessarium possit syllogizari ex contingentibus, non tamen de necessario potest haberi scientia per medium contingens, ut infra probabitur. Et quia conclusio demonstrationis non solum est necessaria, sed etiam per demonstrationem scita, ut dictum est, sequitur quod demonstrativus syllogismus sit ex necessariis. Et ideo accipiendum est ex quibus necessariis et qualibus sint demonstrationes.

Deinde cum dicit: primum autem etc., interponit ea, quae sunt praeintelligenda ad cognoscendum de his de quibus tractaturus est. Et circa hoc duo facit. Primo, dicit de quo est intentio, dicens quod antequam determinetur in speciali ex quibus et qualibus sit demonstratio, primo determinandum est quid intelligatur cum dicimus de omni, et per se, et universale. Cognoscere enim ista est necessarium ad sciendum ex quibus sit demonstratio. Hoc namque oportet observari in demonstrationibus. Oportet enim in propositionibus demonstrationis aliquid universaliter praedicari, quod significat dici de omni, et per se, et etiam primo, quod significat universale. Haec autem tria se habent ex additione ad invicem.

Nam omne quod per se praedicatur, etiam universaliter praedicatur; sed non e converso. Similiter omne quod primo praedicatur, praedicatur per se, sed non convertitur. Unde etiam apparet ratio ordinis istorum. Differentia etiam et numerus istorum trium apparet ex hoc, quod aliquid praedicari dicitur de omni sive universaliter per comparationem ad ea, quae continentur sub subiecto.

Tunc enim dicitur aliquid de omni, ut habetur in libro priorum, quando nihil est sumere sub subiecto, de quo praedicatum non dicatur.

Per se autem dicitur aliquid praedicari, per comparationem ad ipsum subiectum: quia ponitur in eius definitione, vel e converso, ut infra patebit.

Primo vero dicitur aliquid praedicari de altero per comparationem ad ea, quae sunt priora subiecto et continentia ipsum. Nam habere tres angulos etc., non praedicatur primo de isoscele: quia prius praedicatur de priori, scilicet de triangulo.

Secundo, ibi: de omni quidem etc., determinat propositum. Et dividitur in tres partes. Primo, ostendit quid sit dici de omni; secundo, quid sit dici per se; ibi: per se autem etc.; tertio, quid sit universale; ibi: universale autem dico etc.. Circa primum duo facit. Primo, ostendit quid sit dici de omni. Ad quod sciendum est quod dici de omni, prout hic sumitur, addit supra dici de omni, prout sumitur in libro priorum. Nam in libro priorum accipitur dici de omni communiter, prout utitur eo et dialecticus et demonstrator. Et ideo non plus ponitur in definitione eius, quam quod praedicatum insit cuilibet eorum quae continentur sub subiecto. Hoc autem contingit vel ut nunc, et sic utitur quandoque dici de omni dialecticus; vel simpliciter et secundum omne tempus, et sic solum utitur eo demonstrator.

Et ideo in definitione dici de omni, duo ponit: quorum unum est, ut nihil sit sumere sub subiecto cui praedicatum non insit. Et hoc significat cum dicit: non in quodam quidem sic, in quodam autem non. Aliud est, quod non sit accipere aliquod tempus, in quo praedicatum subiecto non conveniat. Et hoc designat cum dicit: neque aliquando sic, aliquando non; et ponit exemplum. Sicut de omni homine praedicatur animal; et de quocunque verum est dicere quod sit homo, verum est dicere quod sit animal, et quandocunque est homo, est animal. Et similiter se habet de linea et de puncto: nam punctum est in linea qualibet et semper.

Secundo; ibi: signum autem etc., manifestat positam definitionem per signum ab instantiis sumptum. Non enim fertur instantia contra universalem propositionem, nisi quia deficit aliquid eorum, quae per eam significantur. Cum autem interrogamur, an aliquid praedicetur de omni in demonstrativis, dupliciter ferimus instantias; vel quia in quodam eorum quae continentur sub subiecto non est verum; vel quia aliquando non est verum. Unde manifestum est quod dici de omni utrunque praedictorum significat.