IN LIBROS POSTER. ANALYT.

 LIBER 1

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 Lectio 16

 Lectio 17

 Lectio 18

 Lectio 19

 Lectio 20

 Lectio 21

 Lectio 22

 Lectio 23

 Lectio 24

 Lectio 25

 Lectio 26

 Lectio 27

 Lectio 28

 Lectio 29

 Lectio 30

 Lectio 31

 Lectio 32

 Lectio 33

 Lectio 34

 Lectio 35

 Lectio 36

 Lectio 37

 Lectio 38

 Lectio 39

 Lectio 40

 Lectio 41

 Lectio 42

 Lectio 43

 Lectio 44

 LIBER 2

 Lectio 1

 Lectio 2

 Lectio 3

 Lectio 4

 Lectio 5

 Lectio 6

 Lectio 7

 Lectio 8

 Lectio 9

 Lectio 10

 Lectio 11

 Lectio 12

 Lectio 13

 Lectio 14

 Lectio 15

 Lectio 16

 Lectio 17

 Lectio 18

 Lectio 19

 Lectio 20

Lectio 12

Postquam notificavit Aristoteles quid sit universale, hic ostendit quomodo in acceptione universalis errare contingat.

Et circa hoc tria facit: primo, dicit quod aliquando circa hoc peccare contingit; secundo, assignat quot modis; ibi: oberramus etc.; tertio, dat documentum quomodo possit cognosci utrum vere acceptum sit universale; ibi: utrum autem secundum quod etc..

Dicit ergo primo quod ad hoc, quod non accidat in demonstratione peccatum, oportet non latere quod multoties videtur demonstrari universale, non autem demonstratur.

Deinde cum dicit: oberramus autem etc., assignat modos quibus circa hoc errare contingit.

Et circa hoc duo facit. Primo, enumerat ipsos modos, dicens quod tripliciter contingit decipi circa acceptionem universalis.

Primo quidem, cum nihil aliud sit accipere sub aliquo communi cui primo competit universale, quam hoc singulare, cui inconvenienter assignatur.

Sicut si sensibile, quod primo et per se inest animali, assignaretur ut universale primum homini, nullo alio animali existente. Unde notandum quod singulare hic large accipitur pro quolibet inferiori, sicut si species dicatur singulare sub genere contentum. Vel potest dici quod non est possibile invenire aliquod genus, cuius una tantum sit species. Genus enim dividitur in species per oppositas differentias; oportet autem, si unum contrariorum invenitur in natura, et reliquum inveniri, ut patet per philosophum in II de caelo et mundo; et ideo si una species invenitur, invenitur et alia. Una autem species dividitur in diversa individua per divisionem materiae.

Contingit autem totam materiam alicui speciei proportionatam, sub uno individuo comprehendi, et tunc non est nisi unum individuum sub una specie. Unde et signanter de singulari mentionem facit.

Secundus modus est, quando est quidem accipere sub aliquo communi multa inferiora, sed tamen illud est commune innominatum, quod invenitur in rebus differentibus specie. Sicut si animali non esset nomen impositum, et sensibile, quod est proprium animalis, assignaretur ut universale primum his quae sub animali continentur, vel divisim vel coniunctim.

Tertius modus est, quando illud de quo demonstratur aliquid, ut universale primum, se habet ad id quod demonstratur de eo, sicut totum ad partem. Sicut si posse videre assignaretur animali ut universale primum. Non enim omne animal potest videre. Inest enim his, quae sunt in parte, idest quae particulariter et non universaliter alicui subiecto conveniunt, demonstratio, idest quod demonstrari possint, et erit quidem demonstratio de omni, non tamen respectu huius de quo demonstratur.

Posse enim videre demonstratur quidem de aliquo universaliter, non tamen universaliter de animali, sicut de eo cui primo insit. Et exponit quid sit primum, secundum quod demonstratio fertur, quod est universale primum.

Secundo; ibi: si igitur etc., subiungit exempla ad praedictos modos, et primo ad tertium, dicens quod, si quis demonstret de lineis rectis quod non intercidant, idest non concurrant, videbitur huiusmodi esse demonstratio, scilicet universalis primi, propter hoc quod non concurrere inest aliquibus lineis rectis. Non autem ita quod hoc fiat, nisi lineae rectae sint aequales, idest aeque distantes. Sed si lineae fuerint aequales, idest aeque distantes, tunc non concurrere convenit eis in quolibet, quia universaliter verum est quod lineae rectae aeque distantes, etiam si in infinitum protrahantur, in neutram partem concurrent.

Secundo; ibi: et si triangulus etc., ponit exemplum ad primum modum, dicens quod si non esset alius triangulus, quam isosceles, qui est triangulus duorum aequalium laterum, quod est trianguli in quantum huiusmodi, videretur esse isoscelis secundum quod est isosceles: nec tamen hoc esset verum.

Tertio; ibi: et proportionale etc., exemplificat de secundo modo. Et videtur hoc ultimo ponere, quia circa hoc diutius immoratur. Et circa hoc tria facit: primo, ponit exemplum; secundo, inducit quoddam corollarium ex dictis; ibi: propter hoc nec si aliquis etc.; tertio, assignat rationem dictorum; ibi: quando igitur non novit etc.. Circa primum sciendum est quod proportio est habitudo unius quantitatis ad alteram, sicut sex ad tria se habent in proportione dupla. Proportionalitas vero est collatio duarum proportionum. Quae, si sit disiuncta, habet quatuor terminos; ut hic: sicut se habent quatuor ad duo, ita sex ad tria: si vero sit coniuncta, habet tres terminos: nam uno utitur ut duobus; ut hic: sicut se habent octo ad quatuor, ita quatuor ad duo. Patet autem quod in proportione duo termini se habent ut antecedentia; duo vero ut consequentia; ut hic: sicut se habent quatuor ad duo, ita se habent sex ad tria; sex et quatuor sunt antecedentia: tria vero et duo sunt consequentia. Permutata ergo proportio est quando antecedentia invicem conferuntur, et consequentia similiter. Ut si dicam: sicut se habent quatuor ad duo, ita se habent sex ad tria; ergo sicut se habent quatuor ad sex, ita se habent duo ad tria. Dicit ergo quod esse proportionale commutabiliter convenit numeris, et lineis, et firmis, idest corporibus, et temporibus.

Sicut autem de singulis determinatum est aliquando seorsum, de numeris quidem in arithmetica, de lineis et firmis in geometria, de temporibus in naturali philosophia vel astrologia, ita contingens est, quod de omnibus praedictis commutatim proportionari una demonstratione demonstretur.

Sed ideo commutatim proportionari, de singulis horum seorsum demonstratur, quia non est nominatum illud commune, in quo omnia ista sunt unum. Etsi enim quantitas omnibus his communis sit, tamen sub se et alia, praeter haec, comprehendit, sicut orationem et quaedam, quae sunt quantitates per accidens. Vel melius dicendum quod commutatim proportionari non convenit quantitati in quantum est quantitas, sed in quantum est comparata alteri quantitati secundum proportionalitatem quandam. Et ideo dixerat etiam in principio proportionale esse quod commutabiliter est. Omnibus autem istis, in quantum sunt proportionalia, non est nomen commune positum.

Cum autem demonstratur commutatim proportionari de singulis praedictorum divisim, non demonstratur universale. Non enim commutatim proportionari inest numeris et lineis, secundum quod huiusmodi, sed secundum quoddam commune.

Demonstrantes autem de lineis seorsum vel de numeris ponunt hoc, quod est commutabiliter proportionari, esse quasi quoddam universale praedicatum lineae secundum quod linea est, aut numeri secundum quod numerus.

Deinde cum dicit: propter hoc nec si aliquis etc., inducit quoddam corollarium ex dictis, dicens quod eadem ratione, qua non demonstratur universale cum de singulis speciebus aliquid demonstratur, quod est universale praedicatum communis innominati; nec etiam demonstratur universale modo praedicto, si sit commune nomen positum. Sicut si aliquis aut eadem demonstratione aut diversa demonstret de unaquaque specie trianguli, quod habet duos rectos, seorsum scilicet de isoscele et seorsum de gradato, idest de triangulo trium laterum inaequalium, non tamen propter hoc cognovit quod triangulus tres angulos habeat aequales duobus rectis, nisi sophistico modo, idest per accidens: quia non cognovit de triangulo secundum quod est triangulus, sed secundum quod est aequilaterus, aut duorum aequalium laterum, aut trium inaequalium. Neque etiam demonstrans cognovit universale trianguli, idest habet cognitionem de triangulo in universali, etiamsi nullus alius triangulus esset praeter illos, de quibus cognovit.

Et hoc ideo, quia non cognovit de triangulo secundum quod est triangulus, sed sub ratione specierum eius. Unde neque cognovit, per se loquendo, omnem triangulum: quia et si secundum numerum cognovit omnem triangulum (si nullus est, quem non novit), tamen secundum speciem non cognovit omnem. Tunc enim cognoscitur aliquid universaliter secundum speciem, quando cognoscitur secundum rationem speciei. Secundum numerum autem et non universaliter, quando cognoscitur secundum multitudinem contentorum sub specie.

Nec est differentia quantum ad hoc si comparemus species ad individua vel genera ad species. Nam triangulus est genus aequilateri et isoscelis.

Deinde cum dicit: quando igitur non novit etc., assignat rationem praedictorum, quaerens quando aliquis cognoscat universaliter et simpliciter, ex quo praedicto modo cognoscens non cognoscit universaliter. Et respondet manifestum esse quod, si eadem esset ratio trianguli in communi et uniuscuiusque specierum eius seorsum acceptae aut omnium simul acceptarum, tunc universaliter et simpliciter nosceret de triangulo, quando sciret de aliqua specie eius vel de omnibus simul. Si vero non est eadem ratio, tunc non erit idem cognoscere triangulum in communi et singulas species eius; sed est alterum. Et cognoscendo de speciebus, non cognoscitur de triangulo secundum quod est triangulus.

Deinde cum dicit: utrum autem etc., dat documentum quo proprie possit accipi universale, dicens quod, utrum aliquid sit trianguli secundum quod est triangulus, aut isoscelis, secundum quod est isosceles, et quando id cuius est demonstratio sit primum et universale, secundum hoc, idest secundum aliquod subiectum positum; manifestum est ex hoc quod dicam. Quandocumque enim, remoto aliquo, adhuc remanet illud quod assignatur universale, sciendum est quod non est primum universale illius. Sicut, remoto isoscele vel aeneo triangulo, remanet quod habeat tres angulos, scilicet duobus rectis aequales. Unde patet quod habere tres angulos aequales duobus rectis non est universale primum, neque isoscelis, neque aenei trianguli. Remota autem figura non remanet habere tres, nec etiam, remoto termino, qui est superius ad figuram, cum figura sit, quae termino vel terminis clauditur; sed tamen non primo convenit neque figurae, neque termino, quia non convenit eis universaliter. Cuius ergo erit primo? manifestum est quod trianguli, quia secundum triangulum inest aliis, tam superioribus, quam inferioribus: ideo enim competit figurae habere tres, quia triangulus est quaedam figura; et similiter isosceli, quia triangulus est, et de triangulo habere tres universaliter demonstratur. Unde eius est universale primum.